亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many scientific and technological problems are related to optimization. Among them, black-box optimization in high-dimensional space is particularly challenging. Recent neural network-based black-box optimization studies have shown noteworthy achievements. However, their capability in high-dimensional search space is still limited. This study proposes a black-box optimization method based on the evolution strategy (ES) and the generative neural network (GNN) model. We designed the algorithm so that the ES and the GNN model work cooperatively. This hybrid model enables reliable training of surrogate networks; it optimizes multi-objective, high-dimensional, and stochastic black-box functions. Our method outperforms baseline optimization methods in this experiment, including ES, and Bayesian optimization.

相關內容

Lasso-type estimators are routinely used to estimate high-dimensional time series models. The theoretical guarantees established for Lasso typically require the penalty level to be chosen in a suitable fashion often depending on unknown population quantities. Furthermore, the resulting estimates and the number of variables retained in the model depend crucially on the chosen penalty level. However, there is currently no theoretically founded guidance for this choice in the context of high-dimensional time series. Instead one resorts to selecting the penalty level in an ad hoc manner using, e.g., information criteria or cross-validation. We resolve this problem by considering estimation of the perhaps most commonly employed multivariate time series model, the linear vector autoregressive (VAR) model, and propose a weighted Lasso estimator with penalization chosen in a fully data-driven way. The theoretical guarantees that we establish for the resulting estimation and prediction error match those currently available for methods based on infeasible choices of penalization. We thus provide a first solution for choosing the penalization in high-dimensional time series models.

Neural radiance fields (NeRFs) have achieved impressive view synthesis results by learning an implicit volumetric representation from multi-view images. To project the implicit representation into an image, NeRF employs volume rendering that approximates the continuous integrals of rays as an accumulation of the colors and densities of the sampled points. Although this approximation enables efficient rendering, it ignores the direction information in point intervals, resulting in ambiguous features and limited reconstruction quality. In this paper, we propose an anisotropic neural representation learning method that utilizes learnable view-dependent features to improve scene representation and reconstruction. We model the volumetric function as spherical harmonic (SH)-guided anisotropic features, parameterized by multilayer perceptrons, facilitating ambiguity elimination while preserving the rendering efficiency. To achieve robust scene reconstruction without anisotropy overfitting, we regularize the energy of the anisotropic features during training. Our method is flexiable and can be plugged into NeRF-based frameworks. Extensive experiments show that the proposed representation can boost the rendering quality of various NeRFs and achieve state-of-the-art rendering performance on both synthetic and real-world scenes.

Most inverse problems from physical sciences are formulated as PDE-constrained optimization problems. This involves identifying unknown parameters in equations by optimizing the model to generate PDE solutions that closely match measured data. The formulation is powerful and widely used in many sciences and engineering fields. However, one crucial assumption is that the unknown parameter must be deterministic. In reality, however, many problems are stochastic in nature, and the unknown parameter is random. The challenge then becomes recovering the full distribution of this unknown random parameter. It is a much more complex task. In this paper, we examine this problem in a general setting. In particular, we conceptualize the PDE solver as a push-forward map that pushes the parameter distribution to the generated data distribution. This way, the SDE-constrained optimization translates to minimizing the distance between the generated distribution and the measurement distribution. We then formulate a gradient-flow equation to seek the ground-truth parameter probability distribution. This opens up a new paradigm for extending many techniques in PDE-constrained optimization to that for systems with stochasticity.

Recent text-to-image (T2I) models have had great success, and many benchmarks have been proposed to evaluate their performance and safety. However, they only consider explicit prompts while neglecting implicit prompts (hint at a target without explicitly mentioning it). These prompts may get rid of safety constraints and pose potential threats to the applications of these models. This position paper highlights the current state of T2I models toward implicit prompts. We present a benchmark named ImplicitBench and conduct an investigation on the performance and impacts of implicit prompts with popular T2I models. Specifically, we design and collect more than 2,000 implicit prompts of three aspects: General Symbols, Celebrity Privacy, and Not-Safe-For-Work (NSFW) Issues, and evaluate six well-known T2I models' capabilities under these implicit prompts. Experiment results show that (1) T2I models are able to accurately create various target symbols indicated by implicit prompts; (2) Implicit prompts bring potential risks of privacy leakage for T2I models. (3) Constraints of NSFW in most of the evaluated T2I models can be bypassed with implicit prompts. We call for increased attention to the potential and risks of implicit prompts in the T2I community and further investigation into the capabilities and impacts of implicit prompts, advocating for a balanced approach that harnesses their benefits while mitigating their risks.

Bayesian optimization (BO) with Gaussian processes (GP) has become an indispensable algorithm for black box optimization problems. Not without a dash of irony, BO is often considered a black box itself, lacking ways to provide reasons as to why certain parameters are proposed to be evaluated. This is particularly relevant in human-in-the-loop applications of BO, such as in robotics. We address this issue by proposing ShapleyBO, a framework for interpreting BO's proposals by game-theoretic Shapley values.They quantify each parameter's contribution to BO's acquisition function. Exploiting the linearity of Shapley values, we are further able to identify how strongly each parameter drives BO's exploration and exploitation for additive acquisition functions like the confidence bound. We also show that ShapleyBO can disentangle the contributions to exploration into those that explore aleatoric and epistemic uncertainty. Moreover, our method gives rise to a ShapleyBO-assisted human machine interface (HMI), allowing users to interfere with BO in case proposals do not align with human reasoning. We demonstrate this HMI's benefits for the use case of personalizing wearable robotic devices (assistive back exosuits) by human-in-the-loop BO. Results suggest human-BO teams with access to ShapleyBO can achieve lower regret than teams without.

We consider estimating a matrix from noisy observations coming from an arbitrary additive bi- rotational invariant perturbation. We propose an estimator which is optimal among the class of rectangular rotational invariant estimators and can be applied irrespective of the prior on the signal. For the particular case of Gaussian noise, we prove the optimality of the proposed estimator, and we find an explicit expression for the MMSE in terms of the limiting singular value distribution of the observation matrix. Moreover, we prove a formula linking the asymptotic mutual information and the limit of a log-spherical integral of rectangular matrices. We also provide numerical checks for our results for general bi-rotational invariant noise, as well as Gaussian noise, which match our theoretical predictions.

Recent years have witnessed significant advancement in face recognition (FR) techniques, with their applications widely spread in people's lives and security-sensitive areas. There is a growing need for reliable interpretations of decisions of such systems. Existing studies relying on various mechanisms have investigated the usage of saliency maps as an explanation approach, but suffer from different limitations. This paper first explores the spatial relationship between face image and its deep representation via gradient backpropagation. Then a new explanation approach FGGB has been conceived, which provides precise and insightful similarity and dissimilarity saliency maps to explain the "Accept" and "Reject" decision of an FR system. Extensive visual presentation and quantitative measurement have shown that FGGB achieves superior performance in both similarity and dissimilarity maps when compared to current state-of-the-art explainable face verification approaches.

Blind image restoration (IR) is a common yet challenging problem in computer vision. Classical model-based methods and recent deep learning (DL)-based methods represent two different methodologies for this problem, each with their own merits and drawbacks. In this paper, we propose a novel blind image restoration method, aiming to integrate both the advantages of them. Specifically, we construct a general Bayesian generative model for the blind IR, which explicitly depicts the degradation process. In this proposed model, a pixel-wise non-i.i.d. Gaussian distribution is employed to fit the image noise. It is with more flexibility than the simple i.i.d. Gaussian or Laplacian distributions as adopted in most of conventional methods, so as to handle more complicated noise types contained in the image degradation. To solve the model, we design a variational inference algorithm where all the expected posteriori distributions are parameterized as deep neural networks to increase their model capability. Notably, such an inference algorithm induces a unified framework to jointly deal with the tasks of degradation estimation and image restoration. Further, the degradation information estimated in the former task is utilized to guide the latter IR process. Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司