亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Knowledge graphs (KGs) represent connections and relationships between real-world entities. We propose a link prediction framework for KGs named Enrichment-Driven GrAph Reasoner (EDGAR), which infers new edges by mining entity-local rules. This approach leverages enrichment analysis, a well-established statistical method used to identify mechanisms common to sets of differentially expressed genes. EDGAR's inference results are inherently explainable and rankable, with p-values indicating the statistical significance of each enrichment-based rule. We demonstrate the framework's effectiveness on a large-scale biomedical KG, ROBOKOP, focusing on drug repurposing for Alzheimer disease (AD) as a case study. Initially, we extracted 14 known drugs from the KG and identified 20 contextual biomarkers through enrichment analysis, revealing functional pathways relevant to shared drug efficacy for AD. Subsequently, using the top 1000 enrichment results, our system identified 1246 additional drug candidates for AD treatment. The top 10 candidates were validated using evidence from medical literature. EDGAR is deployed within ROBOKOP, complete with a web user interface. This is the first study to apply enrichment analysis to large graph completion and drug repurposing.

相關內容

The Open Radio Access Network (O-RAN) architecture is reshaping the telecommunications landscape by enhancing network flexibility, openness, and intelligence. This paper establishes the requirements, evaluates the design tradeoffs, and introduces a scalable architecture and prototype of an open-source O-RAN experimentation platform within the Aerial Experimentation and Research Platform for Advanced Wireless (AERPAW), an at scale testbed that integrates unmanned aerial vehicles (UAVs) with advanced wireless network technologies, offering experimentation in both outdoor testbed and emulation via a custom digital twin (DT). Through a series of aerial experiments, we evaluate FlexRIC, an open-source RAN Intelligent Controller, within the AERPAW hardware-software platform for network data monitoring, providing valuable insights into the proposed integration and revealing opportunities for leveraging O-RAN to create custom service based optimizations for cellular connected UAVs. We discuss the challenges and potential use cases of this integration and demonstrate the use of a generative artificial intelligence model for generating realistic data based on collected real-world data to support AERPAW's DT.

In the current Video-based Dynamic Mesh Coding (V-DMC) standard, inter-frame coding is restricted to mesh frames with constant topology. Consequently, temporal redundancy is not fully leveraged, resulting in suboptimal compression efficacy. To address this limitation, this paper introduces a novel coarse-to-fine scheme to generate anchor meshes for frames with time-varying topology. Initially, we generate a coarse anchor mesh using an octree-based nearest neighbor search. Motion estimation compensates for regions with significant motion changes during this process. However, the quality of the coarse mesh is low due to its suboptimal vertices. To enhance details, the fine anchor mesh is further optimized using the Quadric Error Metrics (QEM) algorithm to calculate more precise anchor points. The inter-frame anchor mesh generated herein retains the connectivity of the reference base mesh, while concurrently preserving superior quality. Experimental results show that our method achieves 7.2% ~ 10.3% BD-rate gain compared to the existing V-DMC test model version 7.

The rapid development of Multimodal Large Language Models (MLLMs) has expanded their capabilities from image comprehension to video understanding. However, most of these MLLMs focus primarily on offline video comprehension, necessitating extensive processing of all video frames before any queries can be made. This presents a significant gap compared to the human ability to watch, listen, think, and respond to streaming inputs in real time, highlighting the limitations of current MLLMs. In this paper, we introduce StreamingBench, the first comprehensive benchmark designed to evaluate the streaming video understanding capabilities of MLLMs. StreamingBench assesses three core aspects of streaming video understanding: (1) real-time visual understanding, (2) omni-source understanding, and (3) contextual understanding. The benchmark consists of 18 tasks, featuring 900 videos and 4,500 human-curated QA pairs. Each video features five questions presented at different time points to simulate a continuous streaming scenario. We conduct experiments on StreamingBench with 13 open-source and proprietary MLLMs and find that even the most advanced proprietary MLLMs like Gemini 1.5 Pro and GPT-4o perform significantly below human-level streaming video understanding capabilities. We hope our work can facilitate further advancements for MLLMs, empowering them to approach human-level video comprehension and interaction in more realistic scenarios.

Dynamic text-attributed graphs (DyTAGs) are prevalent in various real-world scenarios, where each node and edge are associated with text descriptions, and both the graph structure and text descriptions evolve over time. Despite their broad applicability, there is a notable scarcity of benchmark datasets tailored to DyTAGs, which hinders the potential advancement in many research fields. To address this gap, we introduce Dynamic Text-attributed Graph Benchmark (DTGB), a collection of large-scale, time-evolving graphs from diverse domains, with nodes and edges enriched by dynamically changing text attributes and categories. To facilitate the use of DTGB, we design standardized evaluation procedures based on four real-world use cases: future link prediction, destination node retrieval, edge classification, and textual relation generation. These tasks require models to understand both dynamic graph structures and natural language, highlighting the unique challenges posed by DyTAGs. Moreover, we conduct extensive benchmark experiments on DTGB, evaluating 7 popular dynamic graph learning algorithms and their variants of adapting to text attributes with LLM embeddings, along with 6 powerful large language models (LLMs). Our results show the limitations of existing models in handling DyTAGs. Our analysis also demonstrates the utility of DTGB in investigating the incorporation of structural and textual dynamics. The proposed DTGB fosters research on DyTAGs and their broad applications. It offers a comprehensive benchmark for evaluating and advancing models to handle the interplay between dynamic graph structures and natural language. The dataset and source code are available at //github.com/zjs123/DTGB.

Vision-Language Models (VLMs) have shown significant promise in Visual Question Answering (VQA) tasks by leveraging web-scale multimodal datasets. However, these models often struggle with continual learning due to catastrophic forgetting when adapting to new tasks. As an effective remedy to mitigate catastrophic forgetting, rehearsal strategy uses the data of past tasks upon learning new task. However, such strategy incurs the need of storing past data, which might not be feasible due to hardware constraints or privacy concerns. In this work, we propose the first data-free method that leverages the language generation capability of a VLM, instead of relying on external models, to produce pseudo-rehearsal data for addressing continual VQA. Our proposal, named as GaB, generates pseudo-rehearsal data by posing previous task questions on new task data. Yet, despite being effective, the distribution of generated questions skews towards the most frequently posed questions due to the limited and task-specific training data. To mitigate this issue, we introduce a pseudo-rehearsal balancing module that aligns the generated data towards the ground-truth data distribution using either the question meta-statistics or an unsupervised clustering method. We evaluate our proposed method on two recent benchmarks, \ie VQACL-VQAv2 and CLOVE-function benchmarks. GaB outperforms all the data-free baselines with substantial improvement in maintaining VQA performance across evolving tasks, while being on-par with methods with access to the past data.

Current speech-based LLMs are predominantly trained on extensive ASR and TTS datasets, excelling in tasks related to these domains. However, their ability to handle direct speech-to-speech conversations remains notably constrained. These models often rely on an ASR-to-TTS chain-of-thought pipeline, converting speech into text for processing before generating audio responses, which introduces latency and loses audio features. We propose a method that implicitly internalizes ASR chain of thought into a speech LLM, enhancing its native speech understanding capabilities. Our approach reduces latency and improves the model's native understanding of speech, paving the way for more efficient and natural real-time audio interactions. We also release a large-scale synthetic conversational dataset to facilitate further research.

Many real-world applications of tabular data involve using historic events to predict properties of new ones, for example whether a credit card transaction is fraudulent or what rating a customer will assign a product on a retail platform. Existing approaches to event prediction include costly, brittle, and application-dependent techniques such as time-aware positional embeddings, learned row and field encodings, and oversampling methods for addressing class imbalance. Moreover, these approaches often assume specific use-cases, for example that we know the labels of all historic events or that we only predict a pre-specified label and not the data's features themselves. In this work, we propose a simple but flexible baseline using standard autoregressive LLM-style transformers with elementary positional embeddings and a causal language modeling objective. Our baseline outperforms existing approaches across popular datasets and can be employed for various use-cases. We demonstrate that the same model can predict labels, impute missing values, or model event sequences.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司