亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Platonic Representation Hypothesis claims that recent foundation models are converging to a shared representation space as a function of their downstream task performance, irrespective of the objectives and data modalities used to train these models. Representational similarity is generally measured for individual datasets and is not necessarily consistent across datasets. Thus, one may wonder whether this convergence of model representations is confounded by the datasets commonly used in machine learning. Here, we propose a systematic way to measure how representational similarity between models varies with the set of stimuli used to construct the representations. We find that the objective function is the most crucial factor in determining the consistency of representational similarities across datasets. Specifically, self-supervised vision models learn representations whose relative pairwise similarities generalize better from one dataset to another compared to those of image classification or image-text models. Moreover, the correspondence between representational similarities and the models' task behavior is dataset-dependent, being most strongly pronounced for single-domain datasets. Our work provides a framework for systematically measuring similarities of model representations across datasets and linking those similarities to differences in task behavior.

相關內容

Measurement-based quantum computation (MBQC) offers a fundamentally unique paradigm to design quantum algorithms. Indeed, due to the inherent randomness of quantum measurements, the natural operations in MBQC are not deterministic and unitary, but are rather augmented with probabilistic byproducts. Yet, the main algorithmic use of MBQC so far has been to completely counteract this probabilistic nature in order to simulate unitary computations expressed in the circuit model. In this work, we propose designing MBQC algorithms that embrace this inherent randomness and treat the random byproducts in MBQC as a resource for computation. As a natural application where randomness can be beneficial, we consider generative modeling, a task in machine learning centered around generating complex probability distributions. To address this task, we propose a variational MBQC algorithm equipped with control parameters that allow one to directly adjust the degree of randomness to be admitted in the computation. Our algebraic and numerical findings indicate that this additional randomness can lead to significant gains in expressivity and learning performance for certain generative modeling tasks, respectively. These results highlight the potential advantages in exploiting the inherent randomness of MBQC and motivate further research into MBQC-based algorithms.

Accelerated failure time (AFT) models are frequently used to model survival data, providing a direct quantification of the relationship between event times and covariates. These models allow for the acceleration or deceleration of failure times through a multiplicative factor that accounts for the effect of covariates. While existing literature provides numerous methods for fitting AFT models with time-fixed covariates, adapting these approaches to scenarios involving both time-varying covariates and partly interval-censored data remains challenging. Motivated by a randomised clinical trial dataset on advanced melanoma patients, we propose a maximum penalised likelihood approach for fitting a semiparametric AFT model to survival data with partly interval-censored failure times. This method also accommodates both time-fixed and time-varying covariates. We utilise Gaussian basis functions to construct a smooth approximation of the non-parametric baseline hazard and fit the model using a constrained optimisation approach. The effectiveness of our method is demonstrated through extensive simulations. Finally, we illustrate the relevance of our approach by applying it to a dataset from a randomised clinical trial involving patients with advanced melanoma.

We propose a method utilizing physics-informed neural networks (PINNs) to solve Poisson equations that serve as control variates in the computation of transport coefficients via fluctuation formulas, such as the Green--Kubo and generalized Einstein-like formulas. By leveraging approximate solutions to the Poisson equation constructed through neural networks, our approach significantly reduces the variance of the estimator at hand. We provide an extensive numerical analysis of the estimators and detail a methodology for training neural networks to solve these Poisson equations. The approximate solutions are then incorporated into Monte Carlo simulations as effective control variates, demonstrating the suitability of the method for moderately high-dimensional problems where fully deterministic solutions are computationally infeasible.

Long, powerful soft detection forward error correction codes are typically constructed by concatenation of shorter component codes that are decoded through iterative Soft-Input Soft-Output (SISO) procedures. The current gold-standard is Low Density Parity Check (LDPC) codes, which are built from weak single parity check component codes that are capable of producing accurate SO. Due to the recent development of SISO decoders that produce highly accurate SO with codes that have multiple redundant bits, square product code constructions that can avail of more powerful component codes have been shown to be competitive with the LDPC codes in the 5G New Radio standard in terms of decoding performance while requiring fewer iterations to converge. Motivated by applications that require more powerful low-rate codes, in the present paper we explore the possibility of extending this design space by considering the construction and decoding of cubic tensor codes.

Many real-world processes have complex tail dependence structures that cannot be characterized using classical Gaussian processes. More flexible spatial extremes models exhibit appealing extremal dependence properties but are often exceedingly prohibitive to fit and simulate from in high dimensions. In this paper, we aim to push the boundaries on computation and modeling of high-dimensional spatial extremes via integrating a new spatial extremes model that has flexible and non-stationary dependence properties in the encoding-decoding structure of a variational autoencoder called the XVAE. The XVAE can emulate spatial observations and produce outputs that have the same statistical properties as the inputs, especially in the tail. Our approach also provides a novel way of making fast inference with complex extreme-value processes. Through extensive simulation studies, we show that our XVAE is substantially more time-efficient than traditional Bayesian inference while outperforming many spatial extremes models with a stationary dependence structure. Lastly, we analyze a high-resolution satellite-derived dataset of sea surface temperature in the Red Sea, which includes 30 years of daily measurements at 16703 grid cells. We demonstrate how to use XVAE to identify regions susceptible to marine heatwaves under climate change and examine the spatial and temporal variability of the extremal dependence structure.

We investigate diffusion models to solve the Traveling Salesman Problem. Building on the recent DIFUSCO and T2TCO approaches, we propose IDEQ. IDEQ improves the quality of the solutions by leveraging the constrained structure of the state space of the TSP. Another key component of IDEQ consists in replacing the last stages of DIFUSCO curriculum learning by considering a uniform distribution over the Hamiltonian tours whose orbits by the 2-opt operator converge to the optimal solution as the training objective. Our experiments show that IDEQ improves the state of the art for such neural network based techniques on synthetic instances. More importantly, our experiments show that IDEQ performs very well on the instances of the TSPlib, a reference benchmark in the TSP community: it closely matches the performance of the best heuristics, LKH3, being even able to obtain better solutions than LKH3 on 2 instances of the TSPlib defined on 1577 and 3795 cities. IDEQ obtains 0.3% optimality gap on TSP instances made of 500 cities, and 0.5% on TSP instances with 1000 cities. This sets a new SOTA for neural based methods solving the TSP. Moreover, IDEQ exhibits a lower variance and better scales-up with the number of cities with regards to DIFUSCO and T2TCO.

The widespread adoption of digital distribution channels both enables and forces more and more logistical service providers to manage booking processes actively to maintain competitiveness. As a result, their operational planning is no longer limited to solving vehicle routing problems. Instead, demand management decisions and vehicle routing decisions are optimized integratively with the aim of maximizing revenue and minimizing fulfillment cost. The resulting integrated demand management and vehicle routing problems (i-DMVRPs) can be formulated as Markov decision process models and, theoretically, can be solved via the well-known Bellman equation. Unfortunately, the Bellman equation is intractable for realistic-sized instances. Thus, in the literature, i-DMVRPs are often addressed via decomposition-based solution approaches involving an opportunity cost approximation as a key component. Despite its importance, to the best of our knowledge, there is neither a technique to systematically analyze how the accuracy of the opportunity cost approximation translates into overall solution quality nor are there general guidelines on when to apply which class of approximation approach. In this work, we address this research gap by proposing an explainability technique that quantifies and visualizes the magnitude of approximation errors, their immediate impact, and their relevance in specific regions of the state space. Exploiting reward decomposition, it further yields a characterization of different types of approximation errors. Applying the technique to a generic i-DMVRP in a full-factorial computational study and comparing the results with observations in existing literature, we show that the technique contributes to better explaining algorithmic performance and provides guidance for the algorithm selection and development process.

Statistical learning under distribution shift is challenging when neither prior knowledge nor fully accessible data from the target distribution is available. Distributionally robust learning (DRL) aims to control the worst-case statistical performance within an uncertainty set of candidate distributions, but how to properly specify the set remains challenging. To enable distributional robustness without being overly conservative, in this paper, we propose a shape-constrained approach to DRL, which incorporates prior information about the way in which the unknown target distribution differs from its estimate. More specifically, we assume the unknown density ratio between the target distribution and its estimate is isotonic with respect to some partial order. At the population level, we provide a solution to the shape-constrained optimization problem that does not involve the isotonic constraint. At the sample level, we provide consistency results for an empirical estimator of the target in a range of different settings. Empirical studies on both synthetic and real data examples demonstrate the improved accuracy of the proposed shape-constrained approach.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

北京阿比特科技有限公司