亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite the success of graph neural networks (GNNs) in various domains, they exhibit susceptibility to adversarial attacks. Understanding these vulnerabilities is crucial for developing robust and secure applications. In this paper, we investigate the impact of test time adversarial attacks through edge perturbations which involve both edge insertions and deletions. A novel explainability-based method is proposed to identify important nodes in the graph and perform edge perturbation between these nodes. The proposed method is tested for node classification with three different architectures and datasets. The results suggest that introducing edges between nodes of different classes has higher impact as compared to removing edges among nodes within the same class.

相關內容

The integration of a near-space information network (NSIN) with the reconfigurable intelligent surface (RIS) is envisioned to significantly enhance the communication performance of future wireless communication systems by proactively altering wireless channels. This paper investigates the problem of deploying a RIS-integrated NSIN to provide energy-efficient, ultra-reliable and low-latency communications (URLLC) services. We mathematically formulate this problem as a resource optimization problem, aiming to maximize the effective throughput and minimize the system power consumption, subject to URLLC and physical resource constraints. The formulated problem is challenging in terms of accurate channel estimation, RIS phase alignment, theoretical analysis, and effective solution. We propose a joint resource allocation algorithm to handle these challenges. In this algorithm, we develop an accurate channel estimation approach by exploring message passing and optimize phase shifts of RIS reflecting elements to further increase the channel gain. Besides, we derive an analysis-friend expression of decoding error probability and decompose the problem into two-layered optimization problems by analyzing the monotonicity, which makes the formulated problem analytically tractable. Extensive simulations have been conducted to verify the performance of the proposed algorithm. Simulation results show that the proposed algorithm can achieve outstanding channel estimation performance and is more energy-efficient than diverse benchmark algorithms.

In recent years, Graph neural networks (GNNs) have emerged as a prominent tool for classification tasks in machine learning. However, their application in regression tasks remains underexplored. To tap the potential of GNNs in regression, this paper integrates GNNs with attention mechanism, a technique that revolutionized sequential learning tasks with its adaptability and robustness, to tackle a challenging nonlinear regression problem: network localization. We first introduce a novel network localization method based on graph convolutional network (GCN), which exhibits exceptional precision even under severe non-line-of-sight (NLOS) conditions, thereby diminishing the need for laborious offline calibration or NLOS identification. We further propose an attentional graph neural network (AGNN) model, aimed at improving the limited flexibility and mitigating the high sensitivity to the hyperparameter of the GCN-based method. The AGNN comprises two crucial modules, each designed with distinct attention architectures to address specific issues associated with the GCN-based method, rendering it more practical in real-world scenarios. Experimental results substantiate the efficacy of our proposed GCN-based method and AGNN model, as well as the enhancements of AGNN model. Additionally, we delve into the performance improvements of AGNN model by analyzing it from the perspectives of dynamic attention and computational complexity.

Recent studies have shown that recommender systems (RSs) are highly vulnerable to data poisoning attacks. Understanding attack tactics helps improve the robustness of RSs. We intend to develop efficient attack methods that use limited resources to generate high-quality fake user profiles to achieve 1) transferability among black-box RSs 2) and imperceptibility among detectors. In order to achieve these goals, we introduce textual reviews of products to enhance the generation quality of the profiles. Specifically, we propose a novel attack framework named R-Trojan, which formulates the attack objectives as an optimization problem and adopts a tailored transformer-based generative adversarial network (GAN) to solve it so that high-quality attack profiles can be produced. Comprehensive experiments on real-world datasets demonstrate that R-Trojan greatly outperforms state-of-the-art attack methods on various victim RSs under black-box settings and show its good imperceptibility.

The advent of the Internet of Things (IoT) has brought forth additional intricacies and difficulties to computer networks. These gadgets are particularly susceptible to cyber-attacks because of their simplistic design. Therefore, it is crucial to recognise these devices inside a network for the purpose of network administration and to identify any harmful actions. Network traffic fingerprinting is a crucial technique for identifying devices and detecting anomalies. Currently, the predominant methods for this depend heavily on machine learning (ML). Nevertheless, machine learning (ML) methods need the selection of features, adjustment of hyperparameters, and retraining of models to attain optimal outcomes and provide resilience to concept drifts detected in a network. In this research, we suggest using locality-sensitive hashing (LSH) for network traffic fingerprinting as a solution to these difficulties. Our study focuses on examining several design options for the Nilsimsa LSH function. We then use this function to create unique fingerprints for network data, which may be used to identify devices. We also compared it with ML-based traffic fingerprinting and observed that our method increases the accuracy of state-of-the-art by 12% achieving around 94% accuracy in identifying devices in a network.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

With the explosive growth of information technology, multi-view graph data have become increasingly prevalent and valuable. Most existing multi-view clustering techniques either focus on the scenario of multiple graphs or multi-view attributes. In this paper, we propose a generic framework to cluster multi-view attributed graph data. Specifically, inspired by the success of contrastive learning, we propose multi-view contrastive graph clustering (MCGC) method to learn a consensus graph since the original graph could be noisy or incomplete and is not directly applicable. Our method composes of two key steps: we first filter out the undesirable high-frequency noise while preserving the graph geometric features via graph filtering and obtain a smooth representation of nodes; we then learn a consensus graph regularized by graph contrastive loss. Results on several benchmark datasets show the superiority of our method with respect to state-of-the-art approaches. In particular, our simple approach outperforms existing deep learning-based methods.

We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast

Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.

Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.

The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.

北京阿比特科技有限公司