亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Dynamic trees are a well-studied and fundamental building block of dynamic graph algorithms dating back to the seminal work of Sleator and Tarjan [STOC'81, (1981), pp. 114-122]. The problem is to maintain a tree subject to online edge insertions and deletions while answering queries about the tree, such as the heaviest weight on a path, etc. In the parallel batch-dynamic setting, the goal is to process batches of edge updates work efficiently in low ($\text{polylog}\ n$) span. Two work-efficient algorithms are known, batch-parallel Euler Tour Trees by Tseng et al. [ALENEX'19, (2019), pp. 92-106] and parallel Rake-Compress (RC) Trees by Acar et al. [ESA'20, (2020), pp. 2:1-2:23]. Both however are randomized and work efficient in expectation. Several downstream results that use these data structures (and indeed to the best of our knowledge, all known work-efficient parallel batch-dynamic graph algorithms) are therefore also randomized. In this work, we give the first deterministic work-efficient solution to the problem. Our algorithm maintains a dynamic parallel tree contraction subject to batches of $k$ edge updates deterministically in worst-case $O(k \log(1 + n/k))$ work and $O(\log n \log^{(c)} k)$ span for any constant $c$. This allows us to implement parallel batch-dynamic RC-Trees with worst-case $O(k \log(1 + n/k))$ work updates and queries deterministically. Our techniques that we use to obtain the given span bound can also be applied to the state-of-the-art randomized variant of the algorithm to improve its span from $O(\log n \log^* n)$ to $O(\log n)$.

相關內容

Existing polyp segmentation models from colonoscopy images often fail to provide reliable segmentation results on datasets from different centers, limiting their applicability. Our objective in this study is to create a robust and well-generalized segmentation model named PrototypeLab that can assist in polyp segmentation. To achieve this, we incorporate various lighting modes such as White light imaging (WLI), Blue light imaging (BLI), Linked color imaging (LCI), and Flexible spectral imaging color enhancement (FICE) into our new segmentation model, that learns to create prototypes for each class of object present in the images. These prototypes represent the characteristic features of the objects, such as their shape, texture, color. Our model is designed to perform effectively on out-of-distribution (OOD) datasets from multiple centers. We first generate a coarse mask that is used to learn prototypes for the main object class, which are then employed to generate the final segmentation mask. By using prototypes to represent the main class, our approach handles the variability present in the medical images and generalize well to new data since prototype capture the underlying distribution of the data. PrototypeLab offers a promising solution with a dice coefficient of $\geq$ 90\% and mIoU $\geq$ 85\% with a near real-time processing speed for polyp segmentation. It achieved superior performance on OOD datasets compared to 16 state-of-the-art image segmentation architectures, potentially improving clinical outcomes. Codes are available at //github.com/xxxxx/PrototypeLab.

The new industrial settings are characterized by the presence of human and robots that work in close proximity, cooperating in performing the required job. Such a collaboration, however, requires to pay attention to many aspects. Firstly, it is crucial to enable a communication between this two actors that is natural and efficient. Secondly, the robot behavior must always be compliant with the safety regulations, ensuring always a safe collaboration. In this paper, we propose a framework that enables multi-channel communication between humans and robots by leveraging multimodal fusion of voice and gesture commands while always respecting safety regulations. The framework is validated through a comparative experiment, demonstrating that, thanks to multimodal communication, the robot can extract valuable information for performing the required task and additionally, with the safety layer, the robot can scale its speed to ensure the operator's safety.

Self-supervised learning (SSL) methods targeting scene images have seen a rapid growth recently, and they mostly rely on either a dedicated dense matching mechanism or a costly unsupervised object discovery module. This paper shows that instead of hinging on these strenuous operations, quality image representations can be learned by treating scene/multi-label image SSL simply as a multi-label classification problem, which greatly simplifies the learning framework. Specifically, multiple binary pseudo-labels are assigned for each input image by comparing its embeddings with those in two dictionaries, and the network is optimized using the binary cross entropy loss. The proposed method is named Multi-Label Self-supervised learning (MLS). Visualizations qualitatively show that clearly the pseudo-labels by MLS can automatically find semantically similar pseudo-positive pairs across different images to facilitate contrastive learning. MLS learns high quality representations on MS-COCO and achieves state-of-the-art results on classification, detection and segmentation benchmarks. At the same time, MLS is much simpler than existing methods, making it easier to deploy and for further exploration.

Sequential recommender systems have achieved state-of-the-art recommendation performance by modeling the sequential dynamics of user activities. However, in most recommendation scenarios, the popular items comprise the major part of the previous user actions. Therefore, the learned models are biased towards the popular items irrespective of the user's real interests. In this paper, we propose a structural causal model-based method to address the popularity bias issue for sequential recommendation model learning. For more generalizable modeling, we disentangle the popularity and interest representations at both the item side and user context side. Based on the disentangled representation, we identify a more effective structural causal graph for general recommendation applications. Then, we design delicate sequential models to apply the aforementioned causal graph to the sequential recommendation scenario for unbiased prediction with counterfactual reasoning. Furthermore, we conduct extensive offline experiments and online A/B tests to verify the proposed \textbf{DCR} (Disentangled Counterfactual Reasoning) method's superior overall performance and understand the effectiveness of the various introduced components. Based on our knowledge, this is the first structural causal model specifically designed for the popularity bias correction of sequential recommendation models, which achieves significant performance gains over the existing methods.

This paper develops an inferential framework for matrix completion when missing is not at random and without the requirement of strong signals. Our development is based on the observation that if the number of missing entries is small enough compared to the panel size, then they can be estimated well even when missing is not at random. Taking advantage of this fact, we divide the missing entries into smaller groups and estimate each group via nuclear norm regularization. In addition, we show that with appropriate debiasing, our proposed estimate is asymptotically normal even for fairly weak signals. Our work is motivated by recent research on the Tick Size Pilot Program, an experiment conducted by the Security and Exchange Commission (SEC) to evaluate the impact of widening the tick size on the market quality of stocks from 2016 to 2018. While previous studies were based on traditional regression or difference-in-difference methods by assuming that the treatment effect is invariant with respect to time and unit, our analyses suggest significant heterogeneity across units and intriguing dynamics over time during the pilot program.

Clustering analysis of sequence data continues to address many applications in engineering design, aided with the rapid growth of machine learning in applied science. This paper presents an unsupervised machine learning algorithm to extract defining characteristics of earthquake ground-motion spectra, also called latent features, to aid in ground-motion selection (GMS). In this context, a latent feature is a low-dimensional machine-discovered spectral characteristic learned through nonlinear relationships of a neural network autoencoder. Machine discovered latent features can be combined with traditionally defined intensity measures and clustering can be performed to select a representative subgroup from a large ground-motion suite. The objective of efficient GMS is to choose characteristic records representative of what the structure will probabilistically experience in its lifetime. Three examples are presented to validate this approach, including the use of synthetic and field recorded ground-motion datasets. The presented deep embedding clustering of ground-motion spectra has three main advantages: 1. defining characteristics the represent the sparse spectral content of ground-motions are discovered efficiently through training of the autoencoder, 2. domain knowledge is incorporated into the machine learning framework with conditional variables in the deep embedding scheme, and 3. method exhibits excellent performance when compared to a benchmark seismic hazard analysis.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

The inductive biases of graph representation learning algorithms are often encoded in the background geometry of their embedding space. In this paper, we show that general directed graphs can be effectively represented by an embedding model that combines three components: a pseudo-Riemannian metric structure, a non-trivial global topology, and a unique likelihood function that explicitly incorporates a preferred direction in embedding space. We demonstrate the representational capabilities of this method by applying it to the task of link prediction on a series of synthetic and real directed graphs from natural language applications and biology. In particular, we show that low-dimensional cylindrical Minkowski and anti-de Sitter spacetimes can produce equal or better graph representations than curved Riemannian manifolds of higher dimensions.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

北京阿比特科技有限公司