This paper studies using foundational large language models (LLMs) to make decisions during hyperparameter optimization (HPO). Empirical evaluations demonstrate that in settings with constrained search budgets, LLMs can perform comparably or better than traditional HPO methods like random search and Bayesian optimization on standard benchmarks. Furthermore, we propose to treat the code specifying our model as a hyperparameter, which the LLM outputs, going beyond the capabilities of existing HPO approaches. Our findings suggest that LLMs are a promising tool for improving efficiency in the traditional decision-making problem of hyperparameter optimization.
Data contamination in model evaluation has become increasingly prevalent with the growing popularity of large language models. It allows models to "cheat" via memorisation instead of displaying true capabilities. Therefore, contamination analysis has become an crucial part of reliable model evaluation to validate results. However, existing contamination analysis is usually conducted internally by large language model developers and often lacks transparency and completeness. This paper presents an extensive data contamination report for over 15 popular large language models across six popular multiple-choice QA benchmarks. We also introduce an open-source pipeline that enables the community to perform contamination analysis on customised data and models. Our experiments reveal varying contamination levels ranging from 1\% to 45\% across benchmarks, with the contamination degree increasing rapidly over time. Performance analysis of large language models indicates that data contamination does not necessarily lead to increased model metrics: while significant accuracy boosts of up to 14\% and 7\% are observed on contaminated C-Eval and Hellaswag benchmarks, only a minimal increase is noted on contaminated MMLU. We also find larger models seem able to gain more advantages than smaller models on contaminated test sets.
Coded distributed computing (CDC), proposed by Li et al., offers significant potential for reducing the communication load in MapReduce computing systems. In the setting of the cascaded CDC that consisting of $K$ nodes, $N$ input files, and $Q$ output functions, the objective is to compute each output function through $s\geq 1$ nodes with a computation load $r\geq 1$, enabling the application of coding techniques during the Shuffle phase to achieve minimum communication load. However, a significant limitation in most existing cascaded CDC schemes is their demand for splitting the original data into an exponentially growing number of input files and requiring an exponentially large number of output functions, which imposes stringent requirements for implementation. In this paper, we focus on the cascaded case of $K/s\in\mathbb{N}$, deliberately designing the strategy of data placement and output functions assignment based on a grouping method, such that a low-complexity Shuffle strategy is achievable. The main advantages of the proposed scheme include: 1) the multicast gains equal to $(r+s-1)(1-1/s)$ and $r+s-1$ which is approximate to $r+s-1$ when $s$ is relatively large, and the communication load is quite approximate to or surprisingly better than the optimal state-of-the-art scheme proposed by Li et al.; 2) the proposed scheme requires significantly less number of input files and output functions; 3) all the operations are implemented over the minimum binary field $\mathbb{F}_2$ in the one-shot fashion. Finally, we derive a new converse bound for the cascaded CDC framework, under the given strategies of data placement and output functions assignment. We demonstrate that the communication load of the proposed scheme is order optimal within a factor of $2$; and is also approximately optimal when $K$ is sufficiently large for a given $r$.
This study introduces the Lower Ricci Curvature (LRC), a novel, scalable, and scale-free discrete curvature designed to enhance community detection in networks. Addressing the computational challenges posed by existing curvature-based methods, LRC offers a streamlined approach with linear computational complexity, making it well-suited for large-scale network analysis. We further develop an LRC-based preprocessing method that effectively augments popular community detection algorithms. Through comprehensive simulations and applications on real-world datasets, including the NCAA football league network, the DBLP collaboration network, the Amazon product co-purchasing network, and the YouTube social network, we demonstrate the efficacy of our method in significantly improving the performance of various community detection algorithms.
Offline reinforcement learning (RL) is challenged by the distributional shift problem. To address this problem, existing works mainly focus on designing sophisticated policy constraints between the learned policy and the behavior policy. However, these constraints are applied equally to well-performing and inferior actions through uniform sampling, which might negatively affect the learned policy. To alleviate this issue, we propose Offline Prioritized Experience Replay (OPER), featuring a class of priority functions designed to prioritize highly-rewarding transitions, making them more frequently visited during training. Through theoretical analysis, we show that this class of priority functions induce an improved behavior policy, and when constrained to this improved policy, a policy-constrained offline RL algorithm is likely to yield a better solution. We develop two practical strategies to obtain priority weights by estimating advantages based on a fitted value network (OPER-A) or utilizing trajectory returns (OPER-R) for quick computation. OPER is a plug-and-play component for offline RL algorithms. As case studies, we evaluate OPER on five different algorithms, including BC, TD3+BC, Onestep RL, CQL, and IQL. Extensive experiments demonstrate that both OPER-A and OPER-R significantly improve the performance for all baseline methods. Codes and priority weights are availiable at //github.com/sail-sg/OPER.
In recent years, large-scale pre-trained multimodal models (LMM) generally emerge to integrate the vision and language modalities, achieving considerable success in various natural language processing and computer vision tasks. The growing size of LMMs, however, results in a significant computational cost for fine-tuning these models for downstream tasks. Hence, prompt-based interaction strategy is studied to align modalities more efficiently. In this contex, we propose a novel prompt-based multimodal interaction strategy inspired by human memory strategy, namely Memory-Inspired Temporal Prompt Interaction (MITP). Our proposed method involves in two stages as in human memory strategy: the acquiring stage, and the consolidation and activation stage. We utilize temporal prompts on intermediate layers to imitate the acquiring stage, leverage similarity-based prompt interaction to imitate memory consolidation, and employ prompt generation strategy to imitate memory activation. The main strength of our paper is that we interact the prompt vectors on intermediate layers to leverage sufficient information exchange between modalities, with compressed trainable parameters and memory usage. We achieve competitive results on several datasets with relatively small memory usage and 2.0M of trainable parameters (about 1% of the pre-trained foundation model).
Code large language models (Code LLMs) have demonstrated remarkable performance in code generation. Nonetheless, most existing works focus on boosting code LLMs from the perspective of programming capabilities, while their natural language capabilities receive less attention. To fill this gap, we thus propose a novel framework, comprising two modules: AttentionExtractor, which is responsible for extracting key phrases from the user's natural language requirements, and AttentionCoder, which leverages these extracted phrases to generate target code to solve the requirement. This framework pioneers an innovative idea by seamlessly integrating code LLMs with traditional natural language processing tools. To validate the effectiveness of the framework, we craft a new code generation benchmark, called MultiNL-H, covering five natural languages. Extensive experimental results demonstrate the effectiveness of our proposed framework.
Multi-modal large language models (MLLMs) have been shown to efficiently integrate natural language with visual information to handle multi-modal tasks. However, MLLMs still face a fundamental limitation of hallucinations, where they tend to generate erroneous or fabricated information. In this paper, we address hallucinations in MLLMs from a novel perspective of representation learning. We first analyzed the representation distribution of textual and visual tokens in MLLM, revealing two important findings: 1) there is a significant gap between textual and visual representations, indicating unsatisfactory cross-modal representation alignment; 2) representations of texts that contain and do not contain hallucinations are entangled, making it challenging to distinguish them. These two observations inspire us with a simple yet effective method to mitigate hallucinations. Specifically, we introduce contrastive learning into MLLMs and use text with hallucination as hard negative examples, naturally bringing representations of non-hallucinative text and visual samples closer while pushing way representations of non-hallucinating and hallucinative text. We evaluate our method quantitatively and qualitatively, showing its effectiveness in reducing hallucination occurrences and improving performance across multiple benchmarks. On the MMhal-Bench benchmark, our method obtains a 34.66% /29.5% improvement over the baseline MiniGPT-4/LLaVA. Our code is available on //github.com/X-PLUG/mPLUG-HalOwl/tree/main/hacl.
While large language models (LLMs) have enabled learning knowledge from the pre-training corpora, the acquired knowledge may be fundamentally incorrect or outdated over time, which necessitates rectifying the knowledge of the language model (LM) after the training. A promising approach involves employing a hyper-network to generate parameter shift, whereas existing hyper-networks suffer from inferior scalability in synchronous editing operation amount. To mitigate the problem, we propose the MAssive Language Model Editing Network (MALMEN), which formulates the parameter shift aggregation as the least square problem, subsequently updating the LM parameters using the normal equation. To accommodate editing multiple facts simultaneously with limited memory budgets, we separate the computation on the hyper-network and LM, enabling arbitrary batch size on both neural networks. Our method is evaluated by editing up to thousands of facts on LMs with different architectures, i.e., BERT-base, GPT-2, T5-XL (2.8B), and GPT-J (6B), across various knowledge-intensive NLP tasks, i.e., closed book fact-checking and question answering. Remarkably, MALMEN is capable of editing hundreds of times more facts than strong baselines with the identical hyper-network architecture and outperforms editor specifically designed for GPT. Our code is available at //github.com/ChenmienTan/malmen.
Deep neural networks (DNNs) have succeeded in many different perception tasks, e.g., computer vision, natural language processing, reinforcement learning, etc. The high-performed DNNs heavily rely on intensive resource consumption. For example, training a DNN requires high dynamic memory, a large-scale dataset, and a large number of computations (a long training time); even inference with a DNN also demands a large amount of static storage, computations (a long inference time), and energy. Therefore, state-of-the-art DNNs are often deployed on a cloud server with a large number of super-computers, a high-bandwidth communication bus, a shared storage infrastructure, and a high power supplement. Recently, some new emerging intelligent applications, e.g., AR/VR, mobile assistants, Internet of Things, require us to deploy DNNs on resource-constrained edge devices. Compare to a cloud server, edge devices often have a rather small amount of resources. To deploy DNNs on edge devices, we need to reduce the size of DNNs, i.e., we target a better trade-off between resource consumption and model accuracy. In this dissertation, we studied four edge intelligence scenarios, i.e., Inference on Edge Devices, Adaptation on Edge Devices, Learning on Edge Devices, and Edge-Server Systems, and developed different methodologies to enable deep learning in each scenario. Since current DNNs are often over-parameterized, our goal is to find and reduce the redundancy of the DNNs in each scenario.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.