In this paper, we conducted a comparative evaluation of three RGB-D SLAM (Simultaneous Localization and Mapping) algorithms: RTAB-Map, ORB-SLAM3, and OpenVSLAM for SURENA-V humanoid robot localization and mapping. Our test involves the robot to follow a full circular pattern, with an Intel RealSense D435 RGB-D camera installed on its head. In assessing localization accuracy, ORB-SLAM3 outperformed the others with an ATE of 0.1073, followed by RTAB-Map at 0.1641 and OpenVSLAM at 0.1847. However, it should be noted that both ORB-SLAM3 and OpenVSLAM faced challenges in maintaining accurate odometry when the robot encountered a wall with limited feature points. Nevertheless, OpenVSLAM demonstrated the ability to detect loop closures and successfully relocalize itself within the map when the robot approached its initial location. The investigation also extended to mapping capabilities, where RTAB-Map excelled by offering diverse mapping outputs, including dense, OctoMap, and occupancy grid maps. In contrast, both ORB-SLAM3 and OpenVSLAM provided only sparse maps.
The confluence of Federated Learning (FL) and Large Language Models (LLMs) is ushering in a new era in privacy-preserving natural language processing. However, the intensive memory requirements for fine-tuning LLMs pose significant challenges, especially when deploying on clients with limited computational resources. To circumvent this, we explore the novel integration of Memory-efficient Zeroth-Order Optimization within a federated setting, a synergy we term as FedMeZO. Our study is the first to examine the theoretical underpinnings of FedMeZO in the context of LLMs, tackling key questions regarding the influence of large parameter spaces on optimization behavior, the establishment of convergence properties, and the identification of critical parameters for convergence to inform personalized federated strategies. Our extensive empirical evidence supports the theory, showing that FedMeZO not only converges faster than traditional first-order methods such as FedAvg but also significantly reduces GPU memory usage during training to levels comparable to those during inference. Moreover, the proposed personalized FL strategy that is built upon the theoretical insights to customize the client-wise learning rate can effectively accelerate loss reduction. We hope our work can help to bridge theoretical and practical aspects of federated fine-tuning for LLMs, thereby stimulating further advancements and research in this area.
Contextualized embeddings are the preferred tool for modeling Lexical Semantic Change (LSC). Current evaluations typically focus on a specific task known as Graded Change Detection (GCD). However, performance comparison across work are often misleading due to their reliance on diverse settings. In this paper, we evaluate state-of-the-art models and approaches for GCD under equal conditions. We further break the LSC problem into Word-in-Context (WiC) and Word Sense Induction (WSI) tasks, and compare models across these different levels. Our evaluation is performed across different languages on eight available benchmarks for LSC, and shows that (i) APD outperforms other approaches for GCD; (ii) XL-LEXEME outperforms other contextualized models for WiC, WSI, and GCD, while being comparable to GPT-4; (iii) there is a clear need for improving the modeling of word meanings, as well as focus on how, when, and why these meanings change, rather than solely focusing on the extent of semantic change.
This paper explores the realm of abstractive text summarization through the lens of the SEASON (Salience Allocation as Guidance for Abstractive SummarizatiON) technique, a model designed to enhance summarization by leveraging salience allocation techniques. The study evaluates SEASON's efficacy by comparing it with prominent models like BART, PEGASUS, and ProphetNet, all fine-tuned for various text summarization tasks. The assessment is conducted using diverse datasets including CNN/Dailymail, SAMSum, and Financial-news based Event-Driven Trading (EDT), with a specific focus on a financial dataset containing a substantial volume of news articles from 2020/03/01 to 2021/05/06. This paper employs various evaluation metrics such as ROUGE, METEOR, BERTScore, and MoverScore to evaluate the performance of these models fine-tuned for generating abstractive summaries. The analysis of these metrics offers a thorough insight into the strengths and weaknesses demonstrated by each model in summarizing news dataset, dialogue dataset and financial text dataset. The results presented in this paper not only contribute to the evaluation of the SEASON model's effectiveness but also illuminate the intricacies of salience allocation techniques across various types of datasets.
Collision avoidance algorithms for Autonomous Surface Vehicles (ASV) that follow the Convention on the International Regulations for Preventing Collisions at Sea (COLREGs) have been proposed in recent years. However, it may be difficult and unsafe to follow COLREGs in congested waters, where multiple ASVs are navigating in the presence of static obstacles and strong currents, due to the complex interactions. To address this problem, we propose a decentralized multi-ASV collision avoidance policy based on Distributional Reinforcement Learning, which considers the interactions among ASVs as well as with static obstacles and current flows. We evaluate the performance of the proposed Distributional RL based policy against a traditional RL-based policy and two classical methods, Artificial Potential Fields (APF) and Reciprocal Velocity Obstacles (RVO), in simulation experiments, which show that the proposed policy achieves superior performance in navigation safety, while requiring minimal travel time and energy. A variant of our framework that automatically adapts its risk sensitivity is also demonstrated to improve ASV safety in highly congested environments.
Multi-Robot Path Planning (MRPP) on graphs, equivalently known as Multi-Agent Path Finding (MAPF), is a well-established NP-hard problem with critically important applications. As serial computation in (near)-optimally solving MRPP approaches the computation efficiency limit, parallelization offers a promising route to push the limit further, especially in handling hard or large MRPP instances. In this study, we initiated a \emph{targeted} parallelization effort to boost the performance of conflict-based search for MRPP. Specifically, when instances are relatively small but robots are densely packed with strong interactions, we apply a decentralized parallel algorithm that concurrently explores multiple branches that leads to markedly enhanced solution discovery. On the other hand, when instances are large with sparse robot-robot interactions, we prioritize node expansion and conflict resolution. Our innovative multi-threaded approach to parallelizing bounded-suboptimal conflict search-based algorithms demonstrates significant improvements over baseline serial methods in success rate or runtime. Our contribution further pushes the understanding of MRPP and charts a promising path for elevating solution quality and computational efficiency through parallel algorithmic strategies.
Temporal Difference (TD) algorithms are widely used in Deep Reinforcement Learning (RL). Their performance is heavily influenced by the size of the neural network. While in supervised learning, the regime of over-parameterization and its benefits are well understood, the situation in RL is much less clear. In this paper, we present a theoretical analysis of the influence of network size and $l_2$-regularization on performance. We identify the ratio between the number of parameters and the number of visited states as a crucial factor and define over-parameterization as the regime when it is larger than one. Furthermore, we observe a double descent phenomenon, i.e., a sudden drop in performance around the parameter/state ratio of one. Leveraging random features and the lazy training regime, we study the regularized Least-Square Temporal Difference (LSTD) algorithm in an asymptotic regime, as both the number of parameters and states go to infinity, maintaining a constant ratio. We derive deterministic limits of both the empirical and the true Mean-Squared Bellman Error (MSBE) that feature correction terms responsible for the double descent. Correction terms vanish when the $l_2$-regularization is increased or the number of unvisited states goes to zero. Numerical experiments with synthetic and small real-world environments closely match the theoretical predictions.
Advances towards more faithful and traceable answers of Large Language Models (LLMs) are crucial for various research and practical endeavors. One avenue in reaching this goal is basing the answers on reliable sources. However, this Evidence-Based QA has proven to work insufficiently with LLMs in terms of citing the correct sources (source quality) and truthfully representing the information within sources (answer attributability). In this work, we systematically investigate how to robustly fine-tune LLMs for better source quality and answer attributability. Specifically, we introduce a data generation pipeline with automated data quality filters, which can synthesize diversified high-quality training and testing data at scale. We further introduce four test sets to benchmark the robustness of fine-tuned specialist models. Extensive evaluation shows that fine-tuning on synthetic data improves performance on both in- and out-of-distribution. Furthermore, we show that data quality, which can be drastically improved by proposed quality filters, matters more than quantity in improving Evidence-Based QA.
This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We employ eight distinct datasets that encompass aspects including entity, relation and event extraction, link prediction, and question answering. Empirically, our findings suggest that GPT-4 outperforms ChatGPT in the majority of tasks and even surpasses fine-tuned models in certain reasoning and question-answering datasets. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, which culminates in the presentation of the Virtual Knowledge Extraction task and the development of the VINE dataset. Drawing on these empirical findings, we further propose AutoKG, a multi-agent-based approach employing LLMs for KG construction and reasoning, which aims to chart the future of this field and offer exciting opportunities for advancement. We anticipate that our research can provide invaluable insights for future undertakings of KG\footnote{Code and datasets will be available in //github.com/zjunlp/AutoKG.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.