亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent years have witnessed the fast penetration of Virtual Reality (VR) and Augmented Reality (AR) systems into our daily life, the security and privacy issues of the VR/AR applications have been attracting considerable attention. Most VR/AR systems adopt head-mounted devices (i.e., smart headsets) to interact with users and the devices usually store the users' private data. Hence, authentication schemes are desired for the head-mounted devices. Traditional knowledge-based authentication schemes for general personal devices have been proved vulnerable to shoulder-surfing attacks, especially considering the headsets may block the sight of the users. Although the robustness of the knowledge-based authentication can be improved by designing complicated secret codes in virtual space, this approach induces a compromise of usability. Another choice is to leverage the users' biometrics; however, it either relies on highly advanced equipments which may not always be available in commercial headsets or introduce heavy cognitive load to users. In this paper, we propose a vibration-based authentication scheme, VibHead, for smart headsets. Since the propagation of vibration signals through human heads presents unique patterns for different individuals, VibHead employs a CNN-based model to classify registered legitimate users based the features extracted from the vibration signals. We also design a two-step authentication scheme where the above user classifiers are utilized to distinguish the legitimate user from illegitimate ones. We implement VibHead on a Microsoft HoloLens equipped with a linear motor and an IMU sensor which are commonly used in off-the-shelf personal smart devices. According to the results of our extensive experiments, with short vibration signals ($\leq 1s$), VibHead has an outstanding authentication accuracy; both FAR and FRR are around 5%.

相關內容

Recently, the fast development of Large Language Models (LLMs) such as ChatGPT has significantly advanced NLP tasks by enhancing the capabilities of conversational models. However, the application of LLMs in the recommendation domain has not been thoroughly investigated. To bridge this gap, we propose LLMRec, a LLM-based recommender system designed for benchmarking LLMs on various recommendation tasks. Specifically, we benchmark several popular off-the-shelf LLMs, such as ChatGPT, LLaMA, ChatGLM, on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization. Furthermore, we investigate the effectiveness of supervised finetuning to improve LLMs' instruction compliance ability. The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation. However, they demonstrated comparable performance to state-of-the-art methods in explainability-based tasks. We also conduct qualitative evaluations to further evaluate the quality of contents generated by different models, and the results show that LLMs can truly understand the provided information and generate clearer and more reasonable results. We aspire that this benchmark will serve as an inspiration for researchers to delve deeper into the potential of LLMs in enhancing recommendation performance. Our codes, processed data and benchmark results are available at //github.com/williamliujl/LLMRec.

3D Morphable Models (3DMMs) demonstrate great potential for reconstructing faithful and animatable 3D facial surfaces from a single image. The facial surface is influenced by the coarse shape, as well as the static detail (e,g., person-specific appearance) and dynamic detail (e.g., expression-driven wrinkles). Previous work struggles to decouple the static and dynamic details through image-level supervision, leading to reconstructions that are not realistic. In this paper, we aim at high-fidelity 3D face reconstruction and propose HiFace to explicitly model the static and dynamic details. Specifically, the static detail is modeled as the linear combination of a displacement basis, while the dynamic detail is modeled as the linear interpolation of two displacement maps with polarized expressions. We exploit several loss functions to jointly learn the coarse shape and fine details with both synthetic and real-world datasets, which enable HiFace to reconstruct high-fidelity 3D shapes with animatable details. Extensive quantitative and qualitative experiments demonstrate that HiFace presents state-of-the-art reconstruction quality and faithfully recovers both the static and dynamic details. Our project page can be found at //project-hiface.github.io.

Building AIs with adaptive behaviors in human-AI cooperation stands as a pivotal focus in AGI research. Current methods for developing cooperative agents predominantly rely on learning-based methods, where policy generalization heavily hinges on past interactions with specific teammates. These approaches constrain the agent's capacity to recalibrate its strategy when confronted with novel teammates. We propose \textbf{ProAgent}, a novel framework that harnesses large language models (LLMs) to fashion a \textit{pro}active \textit{agent} empowered with the ability to anticipate teammates' forthcoming decisions and formulate enhanced plans for itself. ProAgent excels at cooperative reasoning with the capacity to dynamically adapt its behavior to enhance collaborative efforts with teammates. Moreover, the ProAgent framework exhibits a high degree of modularity and interpretability, facilitating seamless integration to address a wide array of coordination scenarios. Experimental evaluations conducted within the framework of \textit{Overcook-AI} unveil the remarkable performance superiority of ProAgent, outperforming five methods based on self-play and population-based training in cooperation with AI agents. Further, when cooperating with human proxy models, its performance exhibits an average improvement exceeding 10\% compared to the current state-of-the-art, COLE. The advancement was consistently observed across diverse scenarios involving interactions with both AI agents of varying characteristics and human counterparts. These findings inspire future research for human-robot collaborations. For a hands-on demonstration, please visit \url{//pku-proagent.github.io}.

This paper seeks to solve Multi-Source Domain Adaptation (MSDA), which aims to mitigate data distribution shifts when transferring knowledge from multiple labeled source domains to an unlabeled target domain. We propose a novel MSDA framework based on dictionary learning and optimal transport. We interpret each domain in MSDA as an empirical distribution. As such, we express each domain as a Wasserstein barycenter of dictionary atoms, which are empirical distributions. We propose a novel algorithm, DaDiL, for learning via mini-batches: (i) atom distributions; (ii) a matrix of barycentric coordinates. Based on our dictionary, we propose two novel methods for MSDA: DaDil-R, based on the reconstruction of labeled samples in the target domain, and DaDiL-E, based on the ensembling of classifiers learned on atom distributions. We evaluate our methods in 3 benchmarks: Caltech-Office, Office 31, and CRWU, where we improved previous state-of-the-art by 3.15%, 2.29%, and 7.71% in classification performance. Finally, we show that interpolations in the Wasserstein hull of learned atoms provide data that can generalize to the target domain.

The increasing attention given to AI Generated Content (AIGC) has brought a profound impact on various aspects of daily life, industrial manufacturing, and the academic sector. Recognizing the global trends and competitiveness in AIGC development, this study aims to analyze China's current status in the field. The investigation begins with an overview of the foundational technologies and current applications of AIGC. Subsequently, the study delves into the market status, policy landscape, and development trajectory of AIGC in China, utilizing keyword searches to identify relevant scholarly papers. Furthermore, the paper provides a comprehensive examination of AIGC products and their corresponding ecosystem, emphasizing the ecological construction of AIGC. Finally, this paper discusses the challenges and risks faced by the AIGC industry while presenting a forward-looking perspective on the industry's future based on competitive insights in AIGC.

In our modern, fast-paced, and interconnected world, the importance of mental well-being has grown into a matter of great urgency. However, traditional methods such as Emotional Support Conversations (ESC) face challenges in effectively addressing a diverse range of individual personalities. In response, we introduce the Social Support Conversation (S2Conv) framework. It comprises a series of support agents and the interpersonal matching mechanism, linking individuals with persona-compatible virtual supporters. Utilizing persona decomposition based on the MBTI (Myers-Briggs Type Indicator), we have created the MBTI-1024 Bank, a group that of virtual characters with distinct profiles. Through improved role-playing prompts with behavior preset and dynamic memory, we facilitate the development of the MBTI-S2Conv dataset, which contains conversations between the characters in the MBTI-1024 Bank. Building upon these foundations, we present CharacterChat, a comprehensive S2Conv system, which includes a conversational model driven by personas and memories, along with an interpersonal matching plugin model that dispatches the optimal supporters from the MBTI-1024 Bank for individuals with specific personas. Empirical results indicate the remarkable efficacy of CharacterChat in providing personalized social support and highlight the substantial advantages derived from interpersonal matching. The source code is available in \url{//github.com/morecry/CharacterChat}.

We introduce a Self-supervised Contrastive Representation Learning Approach for Time Series Anomaly Detection (CARLA), an innovative end-to-end self-supervised framework carefully developed to identify anomalous patterns in both univariate and multivariate time series data. By taking advantage of contrastive representation learning, We introduce an innovative end-to-end self-supervised deep learning framework carefully developed to identify anomalous patterns in both univariate and multivariate time series data. By taking advantage of contrastive representation learning, CARLA effectively generates robust representations for time series windows. It achieves this by 1) learning similar representations for temporally close windows and dissimilar representations for windows and their equivalent anomalous windows and 2) employing a self-supervised approach to classify normal/anomalous representations of windows based on their nearest/furthest neighbours in the representation space. Most of the existing models focus on learning normal behaviour. The normal boundary is often tightly defined, which can result in slight deviations being classified as anomalies, resulting in a high false positive rate and limited ability to generalise normal patterns. CARLA's contrastive learning methodology promotes the production of highly consistent and discriminative predictions, thereby empowering us to adeptly address the inherent challenges associated with anomaly detection in time series data. Through extensive experimentation on 7 standard real-world time series anomaly detection benchmark datasets, CARLA demonstrates F1 and AU-PR superior to existing state-of-the-art results. Our research highlights the immense potential of contrastive representation learning in advancing the field of time series anomaly detection, thus paving the way for novel applications and in-depth exploration in this domain.

This paper investigates the performance of the Large Language Models (LLMs) ChatGPT-3.5 and GPT-4 in solving introductory programming tasks. Based on the performance, implications for didactic scenarios and assessment formats utilizing LLMs are derived. For the analysis, 72 Python tasks for novice programmers were selected from the free site CodingBat. Full task descriptions were used as input to the LLMs, while the generated replies were evaluated using CodingBat's unit tests. In addition, the general availability of textual explanations and program code was analyzed. The results show high scores of 94.4 to 95.8% correct responses and reliable availability of textual explanations and program code, which opens new ways to incorporate LLMs into programming education and assessment.

This paper addresses the challenge of transferring the behavior expressivity style of a virtual agent to another one while preserving behaviors shape as they carry communicative meaning. Behavior expressivity style is viewed here as the qualitative properties of behaviors. We propose TranSTYLer, a multimodal transformer based model that synthesizes the multimodal behaviors of a source speaker with the style of a target speaker. We assume that behavior expressivity style is encoded across various modalities of communication, including text, speech, body gestures, and facial expressions. The model employs a style and content disentanglement schema to ensure that the transferred style does not interfere with the meaning conveyed by the source behaviors. Our approach eliminates the need for style labels and allows the generalization to styles that have not been seen during the training phase. We train our model on the PATS corpus, which we extended to include dialog acts and 2D facial landmarks. Objective and subjective evaluations show that our model outperforms state of the art models in style transfer for both seen and unseen styles during training. To tackle the issues of style and content leakage that may arise, we propose a methodology to assess the degree to which behavior and gestures associated with the target style are successfully transferred, while ensuring the preservation of the ones related to the source content.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

北京阿比特科技有限公司