亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Thanks to recent advances in generative AI, we are able to prompt large language models (LLMs) to produce texts which are fluent and grammatical. In addition, it has been shown that we can elicit attempts at grammatical error correction (GEC) from LLMs when prompted with ungrammatical input sentences. We evaluate how well LLMs can perform at GEC by measuring their performance on established benchmark datasets. We go beyond previous studies, which only examined GPT* models on a selection of English GEC datasets, by evaluating seven open-source and three commercial LLMs on four established GEC benchmarks. We investigate model performance and report results against individual error types. Our results indicate that LLMs do not always outperform supervised English GEC models except in specific contexts -- namely commercial LLMs on benchmarks annotated with fluency corrections as opposed to minimal edits. We find that several open-source models outperform commercial ones on minimal edit benchmarks, and that in some settings zero-shot prompting is just as competitive as few-shot prompting.

相關內容

Language models (LMs) are statistical models trained to assign probability to human-generated text. As such, it is reasonable to question whether they approximate linguistic variability exhibited by humans well. This form of statistical assessment is difficult to perform at the passage level, for it requires acceptability judgements (i.e., human evaluation) or a robust automated proxy (which is non-trivial). At the word level, however, given some context, samples from an LM can be assessed via exact matching against a prerecorded dataset of alternative single-word continuations of the available context. We exploit this fact and evaluate the LM's ability to reproduce variability that humans (in particular, a population of English speakers) exhibit in the 'next word prediction' task. This can be seen as assessing a form of calibration, which, in the context of text classification, Baan et al. (2022) termed calibration to human uncertainty. We assess GPT2, BLOOM and ChatGPT and find that they exhibit fairly low calibration to human uncertainty. We also verify the failure of expected calibration error (ECE) to reflect this, and as such, advise the community against relying on it in this setting.

The Laplace eigenvalue problem on circular sectors has eigenfunctions with corner singularities. Standard methods may produce suboptimal approximation results. To address this issue, a novel numerical algorithm that enhances standard isogeometric analysis is proposed in this paper by using a single-patch graded mesh refinement scheme. Numerical tests demonstrate optimal convergence rates for both the eigenvalues and eigenfunctions. Furthermore, the results show that smooth splines possess a superior approximation constant compared to their $C^0$-continuous counterparts for the lower part of the Laplace spectrum. This is an extension of previous findings about excellent spectral approximation properties of smooth splines on rectangular domains to circular sectors. In addition, graded meshes prove to be particularly advantageous for an accurate approximation of a limited number of eigenvalues. The novel algorithm applied here has a drawback in the singularity of the isogeometric parameterization. It results in some basis functions not belonging to the solution space of the corresponding weak problem, which is considered a variational crime. However, the approach proves to be robust. Finally, a hierarchical mesh structure is presented to avoid anisotropic elements, omit redundant degrees of freedom and keep the number of basis functions contributing to the variational crime constant, independent of the mesh size. Numerical results validate the effectiveness of hierarchical mesh grading for the simulation of eigenfunctions with and without corner singularities.

Modern Out-of-Order (OoO) CPUs are complex systems with many components interleaved in non-trivial ways. Pinpointing performance bottlenecks and understanding the underlying causes of program performance issues are critical tasks to make the most of hardware resources. We provide an in-depth overview of performance bottlenecks in recent OoO microarchitectures and describe the difficulties of detecting them. Techniques that measure resources utilization can offer a good understanding of a program's execution, but, due to the constraints inherent to Performance Monitoring Units (PMU) of CPUs, do not provide the relevant metrics for each use case. Another approach is to rely on a performance model to simulate the CPU behavior. Such a model makes it possible to implement any new microarchitecture-related metric. Within this framework, we advocate for implementing modeled resources as parameters that can be varied at will to reveal performance bottlenecks. This allows a generalization of bottleneck analysis that we call sensitivity analysis. We present Gus, a novel performance analysis tool that combines the advantages of sensitivity analysis and dynamic binary instrumentation within a resource-centric CPU model. We evaluate the impact of sensitivity on bottleneck analysis over a set of high-performance computing kernels.

Randomized matrix algorithms have become workhorse tools in scientific computing and machine learning. To use these algorithms safely in applications, they should be coupled with posterior error estimates to assess the quality of the output. To meet this need, this paper proposes two diagnostics: a leave-one-out error estimator for randomized low-rank approximations and a jackknife resampling method to estimate the variance of the output of a randomized matrix computation. Both of these diagnostics are rapid to compute for randomized low-rank approximation algorithms such as the randomized SVD and randomized Nystr\"om approximation, and they provide useful information that can be used to assess the quality of the computed output and guide algorithmic parameter choices.

Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.

Knowing which countries contribute the most to pushing the boundaries of knowledge in science and technology has social and political importance. However, common citation metrics do not adequately measure this contribution. This measure requires more stringent metrics appropriate for the highly influential breakthrough papers that push the boundaries of knowledge, which are very highly cited but very rare. Here I used the recently described Rk index, specifically designed to address this issue. I applied this index to 25 countries and the EU across 10 key research topics, five technological and five biomedical, studying domestic and international collaborative papers independently. In technological topics, the Rk indices of domestic papers show that overall, the USA, China, and the EU are leaders; other countries are clearly behind. The USA is notably ahead of China, and the EU is far behind China. The same approach to biomedical topics shows an overwhelming dominance of the USA and that the EU is ahead of China. The analysis of internationally collaborative papers further demonstrates the US dominance. These results conflict with current country rankings based on less stringent indicators.

Perturbation and operator adjoint method are used to give the right adjoint form rigourously. From the derivation, we can have following results: 1) The loss gradient is not an ODE, it is an integral and we shows the reason; 2) The traditional adjoint form is not equivalent with the back propagation results. 3) The adjoint operator analysis shows that if and only if the discrete adjoint has the same scheme with the discrete neural ODE, the adjoint form would give the same results as BP does.

We propose a novel algorithm for the support estimation of partially known Gaussian graphical models that incorporates prior information about the underlying graph. In contrast to classical approaches that provide a point estimate based on a maximum likelihood or a maximum a posteriori criterion using (simple) priors on the precision matrix, we consider a prior on the graph and rely on annealed Langevin diffusion to generate samples from the posterior distribution. Since the Langevin sampler requires access to the score function of the underlying graph prior, we use graph neural networks to effectively estimate the score from a graph dataset (either available beforehand or generated from a known distribution). Numerical experiments demonstrate the benefits of our approach.

Mendelian randomization uses genetic variants as instrumental variables to make causal inferences about the effects of modifiable risk factors on diseases from observational data. One of the major challenges in Mendelian randomization is that many genetic variants are only modestly or even weakly associated with the risk factor of interest, a setting known as many weak instruments. Many existing methods, such as the popular inverse-variance weighted (IVW) method, could be biased when the instrument strength is weak. To address this issue, the debiased IVW (dIVW) estimator, which is shown to be robust to many weak instruments, was recently proposed. However, this estimator still has non-ignorable bias when the effective sample size is small. In this paper, we propose a modified debiased IVW (mdIVW) estimator by multiplying a modification factor to the original dIVW estimator. After this simple correction, we show that the bias of the mdIVW estimator converges to zero at a faster rate than that of the dIVW estimator under some regularity conditions. Moreover, the mdIVW estimator has smaller variance than the dIVW estimator.We further extend the proposed method to account for the presence of instrumental variable selection and balanced horizontal pleiotropy. We demonstrate the improvement of the mdIVW estimator over the dIVW estimator through extensive simulation studies and real data analysis.

The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.

北京阿比特科技有限公司