The labels used to train machine learning (ML) models are of paramount importance. Typically for ML classification tasks, datasets contain hard labels, yet learning using soft labels has been shown to yield benefits for model generalization, robustness, and calibration. Earlier work found success in forming soft labels from multiple annotators' hard labels; however, this approach may not converge to the best labels and necessitates many annotators, which can be expensive and inefficient. We focus on efficiently eliciting soft labels from individual annotators. We collect and release a dataset of soft labels for CIFAR-10 via a crowdsourcing study ($N=248$). We demonstrate that learning with our labels achieves comparable model performance to prior approaches while requiring far fewer annotators. Our elicitation methodology therefore shows promise towards enabling practitioners to enjoy the benefits of improved model performance and reliability with fewer annotators, and serves as a guide for future dataset curators on the benefits of leveraging richer information, such as categorical uncertainty, from individual annotators.
As deep networks require large amounts of accurately labeled training data, a strategy to collect sufficiently large and accurate annotations is as important as innovations in recognition methods. This is especially true for building Computer Aided Detection (CAD) systems for chest X-rays where domain expertise of radiologists is required to annotate the presence and location of abnormalities on X-ray images. However, there lacks concrete evidence that provides guidance on how much resource to allocate for data annotation such that the resulting CAD system reaches desired performance. Without this knowledge, practitioners often fall back to the strategy of collecting as much detail as possible on as much data as possible which is cost inefficient. In this work, we investigate how the cost of data annotation ultimately impacts the CAD model performance on classification and segmentation of chest abnormalities in frontal-view X-ray images. We define the cost of annotation with respect to the following three dimensions: quantity, quality and granularity of labels. Throughout this study, we isolate the impact of each dimension on the resulting CAD model performance on detecting 10 chest abnormalities in X-rays. On a large scale training data with over 120K X-ray images with gold-standard annotations, we find that cost-efficient annotations provide great value when collected in large amounts and lead to competitive performance when compared to models trained with only gold-standard annotations. We also find that combining large amounts of cost efficient annotations with only small amounts of expensive labels leads to competitive CAD models at a much lower cost.
Language planning aims to implement complex high-level goals by decomposition into sequential simpler low-level steps. Such procedural reasoning ability is essential for applications such as household robots and virtual assistants. Although language planning is a basic skill set for humans in daily life, it remains a challenge for large language models (LLMs) that lack deep-level commonsense knowledge in the real world. Previous methods require either manual exemplars or annotated programs to acquire such ability from LLMs. In contrast, this paper proposes Neuro-Symbolic Causal Language Planner (CLAP) that elicits procedural knowledge from the LLMs with commonsense-infused prompting. Pre-trained knowledge in LLMs is essentially an unobserved confounder that causes spurious correlations between tasks and action plans. Through the lens of a Structural Causal Model (SCM), we propose an effective strategy in CLAP to construct prompts as a causal intervention toward our SCM. Using graph sampling techniques and symbolic program executors, our strategy formalizes the structured causal prompts from commonsense knowledge bases. CLAP obtains state-of-the-art performance on WikiHow and RobotHow, achieving a relative improvement of 5.28% in human evaluations under the counterfactual setting. This indicates the superiority of CLAP in causal language planning semantically and sequentially.
Computing an accurate mean of a set of time series is a critical task in applications like nearest-neighbor classification and clustering of time series. While there are many distance functions for time series, the most popular distance function used for the computation of time series means is the non-metric dynamic time warping (DTW) distance. A recent algorithm for the exact computation of a DTW-Mean has a running time of $\mathcal{O}(n^{2k+1}2^kk)$, where $k$ denotes the number of time series and $n$ their maximum length. In this paper, we study the mean problem for the move-split-merge (MSM) metric that not only offers high practical accuracy for time series classification but also carries of the advantages of the metric properties that enable further diverse applications. The main contribution of this paper is an exact and efficient algorithm for the MSM-Mean problem of time series. The running time of our algorithm is $\mathcal{O}(n^{k+3}2^k k^3 )$, and thus better than the previous DTW-based algorithm. The results of an experimental comparison confirm the running time superiority of our algorithm in comparison to the DTW-Mean competitor. Moreover, we introduce a heuristic to improve the running time significantly without sacrificing much accuracy.
Transfer learning is a proven technique in 2D computer vision to leverage the large amount of data available and achieve high performance with datasets limited in size due to the cost of acquisition or annotation. In 3D, annotation is known to be a costly task; nevertheless, transfer learning methods have only recently been investigated. Unsupervised pre-training has been heavily favored as no very large annotated dataset are available. In this work, we tackle the case of real-time 3D semantic segmentation of sparse outdoor LiDAR scans. Such datasets have been on the rise, but with different label sets even for the same task. In this work, we propose here an intermediate-level label set called the coarse labels, which allows all the data available to be leveraged without any manual labelization. This way, we have access to a larger dataset, alongside a simpler task of semantic segmentation. With it, we introduce a new pre-training task: the coarse label pre-training, also called COLA. We thoroughly analyze the impact of COLA on various datasets and architectures and show that it yields a noticeable performance improvement, especially when the finetuning task has access only to a small dataset.
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.
Connecting Vision and Language plays an essential role in Generative Intelligence. For this reason, in the last few years, a large research effort has been devoted to image captioning, i.e. the task of describing images with syntactically and semantically meaningful sentences. Starting from 2015 the task has generally been addressed with pipelines composed of a visual encoding step and a language model for text generation. During these years, both components have evolved considerably through the exploitation of object regions, attributes, and relationships and the introduction of multi-modal connections, fully-attentive approaches, and BERT-like early-fusion strategies. However, regardless of the impressive results obtained, research in image captioning has not reached a conclusive answer yet. This work aims at providing a comprehensive overview and categorization of image captioning approaches, from visual encoding and text generation to training strategies, used datasets, and evaluation metrics. In this respect, we quantitatively compare many relevant state-of-the-art approaches to identify the most impactful technical innovations in image captioning architectures and training strategies. Moreover, many variants of the problem and its open challenges are analyzed and discussed. The final goal of this work is to serve as a tool for understanding the existing state-of-the-art and highlighting the future directions for an area of research where Computer Vision and Natural Language Processing can find an optimal synergy.
A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.
Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.
Meta-learning extracts the common knowledge acquired from learning different tasks and uses it for unseen tasks. It demonstrates a clear advantage on tasks that have insufficient training data, e.g., few-shot learning. In most meta-learning methods, tasks are implicitly related via the shared model or optimizer. In this paper, we show that a meta-learner that explicitly relates tasks on a graph describing the relations of their output dimensions (e.g., classes) can significantly improve the performance of few-shot learning. This type of graph is usually free or cheap to obtain but has rarely been explored in previous works. We study the prototype based few-shot classification, in which a prototype is generated for each class, such that the nearest neighbor search between the prototypes produces an accurate classification. We introduce "Gated Propagation Network (GPN)", which learns to propagate messages between prototypes of different classes on the graph, so that learning the prototype of each class benefits from the data of other related classes. In GPN, an attention mechanism is used for the aggregation of messages from neighboring classes, and a gate is deployed to choose between the aggregated messages and the message from the class itself. GPN is trained on a sequence of tasks from many-shot to few-shot generated by subgraph sampling. During training, it is able to reuse and update previously achieved prototypes from the memory in a life-long learning cycle. In experiments, we change the training-test discrepancy and test task generation settings for thorough evaluations. GPN outperforms recent meta-learning methods on two benchmark datasets in all studied cases.
To quickly obtain new labeled data, we can choose crowdsourcing as an alternative way at lower cost in a short time. But as an exchange, crowd annotations from non-experts may be of lower quality than those from experts. In this paper, we propose an approach to performing crowd annotation learning for Chinese Named Entity Recognition (NER) to make full use of the noisy sequence labels from multiple annotators. Inspired by adversarial learning, our approach uses a common Bi-LSTM and a private Bi-LSTM for representing annotator-generic and -specific information. The annotator-generic information is the common knowledge for entities easily mastered by the crowd. Finally, we build our Chinese NE tagger based on the LSTM-CRF model. In our experiments, we create two data sets for Chinese NER tasks from two domains. The experimental results show that our system achieves better scores than strong baseline systems.