Machine learning algorithms are heavily relied on to understand the vast amounts of data from high-energy particle collisions at the CERN Large Hadron Collider (LHC). The data from such collision events can naturally be represented with graph structures. Therefore, deep geometric methods, such as graph neural networks (GNNs), have been leveraged for various data analysis tasks in high-energy physics. One typical task is jet tagging, where jets are viewed as point clouds with distinct features and edge connections between their constituent particles. The increasing size and complexity of the LHC particle datasets, as well as the computational models used for their analysis, greatly motivate the development of alternative fast and efficient computational paradigms such as quantum computation. In addition, to enhance the validity and robustness of deep networks, one can leverage the fundamental symmetries present in the data through the use of invariant inputs and equivariant layers. In this paper, we perform a fair and comprehensive comparison between classical graph neural networks (GNNs) and equivariant graph neural networks (EGNNs) and their quantum counterparts: quantum graph neural networks (QGNNs) and equivariant quantum graph neural networks (EQGNN). The four architectures were benchmarked on a binary classification task to classify the parton-level particle initiating the jet. Based on their AUC scores, the quantum networks were shown to outperform the classical networks. However, seeing the computational advantage of the quantum networks in practice may have to wait for the further development of quantum technology and its associated APIs.
Mapping speech tokens to the same feature space as text tokens has become the paradigm for the integration of speech modality into decoder-only large language models (LLMs). An alternative approach is to use an encoder-decoder architecture that incorporates speech features through cross-attention. This approach, however, has received less attention in the literature. In this work, we connect the Whisper encoder with ChatGLM3 and provide in-depth comparisons of these two approaches using Chinese automatic speech recognition (ASR) and name entity recognition (NER) tasks. We evaluate them not only by conventional metrics like the F1 score but also by a novel fine-grained taxonomy of ASR-NER errors. Our experiments reveal that encoder-decoder architecture outperforms decoder-only architecture with a short context, while decoder-only architecture benefits from a long context as it fully exploits all layers of the LLM. By using LLM, we significantly reduced the entity omission errors and improved the entity ASR accuracy compared to the Conformer baseline. Additionally, we obtained a state-of-the-art (SOTA) F1 score of 0.805 on the AISHELL-NER test set by using chain-of-thought (CoT) NER which first infers long-form ASR transcriptions and then predicts NER labels.
Many physical processes in science and engineering are naturally represented by operators between infinite-dimensional function spaces. The problem of operator learning, in this context, seeks to extract these physical processes from empirical data, which is challenging due to the infinite or high dimensionality of data. An integral component in addressing this challenge is model reduction, which reduces both the data dimensionality and problem size. In this paper, we utilize low-dimensional nonlinear structures in model reduction by investigating Auto-Encoder-based Neural Network (AENet). AENet first learns the latent variables of the input data and then learns the transformation from these latent variables to corresponding output data. Our numerical experiments validate the ability of AENet to accurately learn the solution operator of nonlinear partial differential equations. Furthermore, we establish a mathematical and statistical estimation theory that analyzes the generalization error of AENet. Our theoretical framework shows that the sample complexity of training AENet is intricately tied to the intrinsic dimension of the modeled process, while also demonstrating the remarkable resilience of AENet to noise.
Behemoth graphs are often fragmented and separately stored by multiple data owners as distributed subgraphs in many realistic applications. Without harming data privacy, it is natural to consider the subgraph federated learning (subgraph FL) scenario, where each local client holds a subgraph of the entire global graph, to obtain globally generalized graph mining models. To overcome the unique challenge of incomplete information propagation on local subgraphs due to missing cross-subgraph neighbors, previous works resort to the augmentation of local neighborhoods through the joint FL of missing neighbor generators and GNNs. Yet their technical designs have profound limitations regarding the utility, efficiency, and privacy goals of FL. In this work, we propose FedDEP to comprehensively tackle these challenges in subgraph FL. FedDEP consists of a series of novel technical designs: (1) Deep neighbor generation through leveraging the GNN embeddings of potential missing neighbors; (2) Efficient pseudo-FL for neighbor generation through embedding prototyping; and (3) Privacy protection through noise-less edge-local-differential-privacy. We analyze the correctness and efficiency of FedDEP, and provide theoretical guarantees on its privacy. Empirical results on four real-world datasets justify the clear benefits of proposed techniques.
Digital audio signal reconstruction of a lost or corrupt segment using deep learning algorithms has been explored intensively in recent years. Nevertheless, prior traditional methods with linear interpolation, phase coding and tone insertion techniques are still in vogue. However, we found no research work on reconstructing audio signals with the fusion of dithering, steganography, and machine learning regressors. Therefore, this paper proposes the combination of steganography, halftoning (dithering), and state-of-the-art shallow and deep learning methods. The results (including comparing the SPAIN, Autoregressive, deep learning-based, graph-based, and other methods) are evaluated with three different metrics. The observations from the results show that the proposed solution is effective and can enhance the reconstruction of audio signals performed by the side information (e.g., Latent representation) steganography provides. Moreover, this paper proposes a novel framework for reconstruction from heavily compressed embedded audio data using halftoning (i.e., dithering) and machine learning, which we termed the HCR (halftone-based compression and reconstruction). This work may trigger interest in optimising this approach and/or transferring it to different domains (i.e., image reconstruction). Compared to existing methods, we show improvement in the inpainting performance in terms of signal-to-noise ratio (SNR), the objective difference grade (ODG) and Hansen's audio quality metric. In particular, our proposed framework outperformed the learning-based methods (D2WGAN and SG) and the traditional statistical algorithms (e.g., SPAIN, TDC, WCP).
Adaptive finite element methods are a powerful tool to obtain numerical simulation results in a reasonable time. Due to complex chemical and mechanical couplings in lithium-ion batteries, numerical simulations are very helpful to investigate promising new battery active materials such as amorphous silicon featuring a higher energy density than graphite. Based on a thermodynamically consistent continuum model with large deformation and chemo-mechanically coupled approach, we compare three different spatial adaptive refinement strategies: Kelly-, gradient recovery- and residual based error estimation. For the residual based case, the strong formulation of the residual is explicitly derived. With amorphous silicon as example material, we investigate two 3D representative host particle geometries, reduced with symmetry assumptions to a 1D unit interval and a 2D elliptical domain. Our numerical studies show that the Kelly estimator overestimates the error, whereas the gradient recovery estimator leads to lower refinement levels and a good capture of the change of the lithium flux. The residual based error estimator reveals a strong dependency on the cell error part which can be improved by a more suitable choice of constants to be more efficient. In a 2D domain, the concentration has a larger influence on the mesh distribution than the Cauchy stress.
A common pipeline in functional data analysis is to first convert the discretely observed data to smooth functions, and then represent the functions by a finite-dimensional vector of coefficients summarizing the information. Existing methods for data smoothing and dimensional reduction mainly focus on learning the linear mappings from the data space to the representation space, however, learning only the linear representations may not be sufficient. In this study, we propose to learn the nonlinear representations of functional data using neural network autoencoders designed to process data in the form it is usually collected without the need of preprocessing. We design the encoder to employ a projection layer computing the weighted inner product of the functional data and functional weights over the observed timestamp, and the decoder to apply a recovery layer that maps the finite-dimensional vector extracted from the functional data back to functional space using a set of predetermined basis functions. The developed architecture can accommodate both regularly and irregularly spaced data. Our experiments demonstrate that the proposed method outperforms functional principal component analysis in terms of prediction and classification, and maintains superior smoothing ability and better computational efficiency in comparison to the conventional autoencoders under both linear and nonlinear settings.
Contrastive loss has been increasingly used in learning representations from multiple modalities. In the limit, the nature of the contrastive loss encourages modalities to exactly match each other in the latent space. Yet it remains an open question how the modality alignment affects the downstream task performance. In this paper, based on an information-theoretic argument, we first prove that exact modality alignment is sub-optimal in general for downstream prediction tasks. Hence we advocate that the key of better performance lies in meaningful latent modality structures instead of perfect modality alignment. To this end, we propose three general approaches to construct latent modality structures. Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization. Extensive experiments are conducted on two popular multi-modal representation learning frameworks: the CLIP-based two-tower model and the ALBEF-based fusion model. We test our model on a variety of tasks including zero/few-shot image classification, image-text retrieval, visual question answering, visual reasoning, and visual entailment. Our method achieves consistent improvements over existing methods, demonstrating the effectiveness and generalizability of our proposed approach on latent modality structure regularization.
Meta-reinforcement learning algorithms can enable robots to acquire new skills much more quickly, by leveraging prior experience to learn how to learn. However, much of the current research on meta-reinforcement learning focuses on task distributions that are very narrow. For example, a commonly used meta-reinforcement learning benchmark uses different running velocities for a simulated robot as different tasks. When policies are meta-trained on such narrow task distributions, they cannot possibly generalize to more quickly acquire entirely new tasks. Therefore, if the aim of these methods is to enable faster acquisition of entirely new behaviors, we must evaluate them on task distributions that are sufficiently broad to enable generalization to new behaviors. In this paper, we propose an open-source simulated benchmark for meta-reinforcement learning and multi-task learning consisting of 50 distinct robotic manipulation tasks. Our aim is to make it possible to develop algorithms that generalize to accelerate the acquisition of entirely new, held-out tasks. We evaluate 6 state-of-the-art meta-reinforcement learning and multi-task learning algorithms on these tasks. Surprisingly, while each task and its variations (e.g., with different object positions) can be learned with reasonable success, these algorithms struggle to learn with multiple tasks at the same time, even with as few as ten distinct training tasks. Our analysis and open-source environments pave the way for future research in multi-task learning and meta-learning that can enable meaningful generalization, thereby unlocking the full potential of these methods.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.