The proliferation of global censorship has led to the development of a plethora of measurement platforms to monitor and expose it. Censorship of the domain name system (DNS) is a key mechanism used across different countries. It is currently detected by applying heuristics to samples of DNS queries and responses (probes) for specific destinations. These heuristics, however, are both platform-specific and have been found to be brittle when censors change their blocking behavior, necessitating a more reliable automated process for detecting censorship. In this paper, we explore how machine learning (ML) models can (1) help streamline the detection process, (2) improve the usability of large-scale datasets for censorship detection, and (3) discover new censorship instances and blocking signatures missed by existing heuristic methods. Our study shows that supervised models, trained using expert-derived labels on instances of known anomalies and possible censorship, can learn the detection heuristics employed by different measurement platforms. More crucially, we find that unsupervised models, trained solely on uncensored instances, can identify new instances and variations of censorship missed by existing heuristics. Moreover, both methods demonstrate the capability to uncover a substantial number of new DNS blocking signatures, i.e., injected fake IP addresses overlooked by existing heuristics. These results are underpinned by an important methodological finding: comparing the outputs of models trained using the same probes but with labels arising from independent processes allows us to more reliably detect cases of censorship in the absence of ground-truth labels of censorship.
Crowdsourcing allows running simple human intelligence tasks on a large crowd of workers, enabling solving problems for which it is difficult to formulate an algorithm or train a machine learning model in reasonable time. One of such problems is data clustering by an under-specified criterion that is simple for humans, but difficult for machines. In this demonstration paper, we build a crowdsourced system for image clustering and release its code under a free license at //github.com/Toloka/crowdclustering. Our experiments on two different image datasets, dresses from Zalando's FEIDEGGER and shoes from the Toloka Shoes Dataset, confirm that one can yield meaningful clusters with no machine learning algorithms purely with crowdsourcing.
Despite its pivotal role in research experiments, code correctness is often presumed only on the basis of the perceived quality of the results. This comes with the risk of erroneous outcomes and potentially misleading findings. To address this issue, we posit that the current focus on result reproducibility should go hand in hand with the emphasis on coding best practices. We bolster our call to the NLP community by presenting a case study, in which we identify (and correct) three bugs in widely used open-source implementations of the state-of-the-art Conformer architecture. Through comparative experiments on automatic speech recognition and translation in various language settings, we demonstrate that the existence of bugs does not prevent the achievement of good and reproducible results and can lead to incorrect conclusions that potentially misguide future research. In response to this, this study is a call to action toward the adoption of coding best practices aimed at fostering correctness and improving the quality of the developed software.
Anomaly detectors are widely used in industrial production to detect and localize unknown defects in query images. These detectors are trained on nominal images and have shown success in distinguishing anomalies from most normal samples. However, hard-nominal examples are scattered and far apart from most normalities, they are often mistaken for anomalies by existing anomaly detectors. To address this problem, we propose a simple yet efficient method: \textbf{H}ard Nominal \textbf{E}xample-aware \textbf{T}emplate \textbf{M}utual \textbf{M}atching (HETMM). Specifically, \textit{HETMM} aims to construct a robust prototype-based decision boundary, which can precisely distinguish between hard-nominal examples and anomalies, yielding fewer false-positive and missed-detection rates. Moreover, \textit{HETMM} mutually explores the anomalies in two directions between queries and the template set, and thus it is capable to capture the logical anomalies. This is a significant advantage over most anomaly detectors that frequently fail to detect logical anomalies. Additionally, to meet the speed-accuracy demands, we further propose \textbf{P}ixel-level \textbf{T}emplate \textbf{S}election (PTS) to streamline the original template set. \textit{PTS} selects cluster centres and hard-nominal examples to form a tiny set, maintaining the original decision boundaries. Comprehensive experiments on five real-world datasets demonstrate that our methods yield outperformance than existing advances under the real-time inference speed. Furthermore, \textit{HETMM} can be hot-updated by inserting novel samples, which may promptly address some incremental learning issues.
Federated Learning (FL) has been gaining popularity as a collaborative learning framework to train deep learning-based object detection models over a distributed population of clients. Despite its advantages, FL is vulnerable to model hijacking. The attacker can control how the object detection system should misbehave by implanting Trojaned gradients using only a small number of compromised clients in the collaborative learning process. This paper introduces STDLens, a principled approach to safeguarding FL against such attacks. We first investigate existing mitigation mechanisms and analyze their failures caused by the inherent errors in spatial clustering analysis on gradients. Based on the insights, we introduce a three-tier forensic framework to identify and expel Trojaned gradients and reclaim the performance over the course of FL. We consider three types of adaptive attacks and demonstrate the robustness of STDLens against advanced adversaries. Extensive experiments show that STDLens can protect FL against different model hijacking attacks and outperform existing methods in identifying and removing Trojaned gradients with significantly higher precision and much lower false-positive rates.
Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.
The considerable significance of Anomaly Detection (AD) problem has recently drawn the attention of many researchers. Consequently, the number of proposed methods in this research field has been increased steadily. AD strongly correlates with the important computer vision and image processing tasks such as image/video anomaly, irregularity and sudden event detection. More recently, Deep Neural Networks (DNNs) offer a high performance set of solutions, but at the expense of a heavy computational cost. However, there is a noticeable gap between the previously proposed methods and an applicable real-word approach. Regarding the raised concerns about AD as an ongoing challenging problem, notably in images and videos, the time has come to argue over the pitfalls and prospects of methods have attempted to deal with visual AD tasks. Hereupon, in this survey we intend to conduct an in-depth investigation into the images/videos deep learning based AD methods. We also discuss current challenges and future research directions thoroughly.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.
Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc anomaly detection techniques to detect (and discard) these anomalous samples have been proposed in the recent past. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for DL based applications. We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches. We discuss various techniques in each of the categories and provide the relative strengths and weaknesses of the approaches. Our goal in this survey is to provide an easier yet better understanding of the techniques belonging to different categories in which research has been done on this topic. Finally, we highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.
The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.
In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.