亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To date, most directed acyclic graphs (DAGs) structure learning approaches require data to be stored in a central server. However, due to the consideration of privacy protection, data owners gradually refuse to share their personalized raw data to avoid private information leakage, making this task more troublesome by cutting off the first step. Thus, a puzzle arises: \textit{how do we discover the underlying DAG structure from decentralized data?} In this paper, focusing on the additive noise models (ANMs) assumption of data generation, we take the first step in developing a gradient-based learning framework named FedDAG, which can learn the DAG structure without directly touching the local data and also can naturally handle the data heterogeneity. Our method benefits from a two-level structure of each local model. The first level structure learns the edges and directions of the graph and communicates with the server to get the model information from other clients during the learning procedure, while the second level structure approximates the mechanisms among variables and personally updates on its own data to accommodate the data heterogeneity. Moreover, FedDAG formulates the overall learning task as a continuous optimization problem by taking advantage of an equality acyclicity constraint, which can be solved by gradient descent methods to boost the searching efficiency. Extensive experiments on both synthetic and real-world datasets verify the efficacy of the proposed method.

相關內容

Vertical Federated Learning (VFL) enables multiple data owners, each holding a different subset of features about largely overlapping sets of data sample(s), to jointly train a useful global model. Feature selection (FS) is important to VFL. It is still an open research problem as existing FS works designed for VFL either assumes prior knowledge on the number of noisy features or prior knowledge on the post-training threshold of useful features to be selected, making them unsuitable for practical applications. To bridge this gap, we propose the Federated Stochastic Dual-Gate based Feature Selection (FedSDG-FS) approach. It consists of a Gaussian stochastic dual-gate to efficiently approximate the probability of a feature being selected, with privacy protection through Partially Homomorphic Encryption without a trusted third-party. To reduce overhead, we propose a feature importance initialization method based on Gini impurity, which can accomplish its goals with only two parameter transmissions between the server and the clients. Extensive experiments on both synthetic and real-world datasets show that FedSDG-FS significantly outperforms existing approaches in terms of achieving accurate selection of high-quality features as well as building global models with improved performance.

Learning the underlying Bayesian Networks (BNs), represented by directed acyclic graphs (DAGs), of the concerned events from purely-observational data is a crucial part of evidential reasoning. This task remains challenging due to the large and discrete search space. A recent flurry of developments followed NOTEARS[1] recast this combinatorial problem into a continuous optimization problem by leveraging an algebraic equality characterization of acyclicity. However, the continuous optimization methods suffer from obtaining non-spare graphs after the numerical optimization, which leads to the inflexibility to rule out the potentially cycle-inducing edges or false discovery edges with small values. To address this issue, in this paper, we develop a completely data-driven DAG structure learning method without a predefined value to post-threshold small values. We name our method NOTEARS with adaptive Lasso (NOTEARS-AL), which is achieved by applying the adaptive penalty method to ensure the sparsity of the estimated DAG. Moreover, we show that NOTEARS-AL also inherits the oracle properties under some specific conditions. Extensive experiments on both synthetic and a real-world dataset demonstrate that our method consistently outperforms NOTEARS.

Federated Learning (FL) aims to foster collaboration among a population of clients to improve the accuracy of machine learning without directly sharing local data. Although there has been rich literature on designing federated learning algorithms, most prior works implicitly assume that all clients are willing to participate in a FL scheme. In practice, clients may not benefit from joining in FL, especially in light of potential costs related to issues such as privacy and computation. In this work, we study the clients' incentives in federated learning to help the service provider design better solutions and ensure clients make better decisions. We are the first to model clients' behaviors in FL as a network effects game, where each client's benefit depends on other clients who also join the network. Using this setup we analyze the dynamics of clients' participation and characterize the equilibrium, where no client has incentives to alter their decision. Specifically, we show that dynamics in the population naturally converge to equilibrium without needing explicit interventions. Finally, we provide a cost-efficient payment scheme that incentivizes clients to reach a desired equilibrium when the initial network is empty.

Federated learning (FL) has been proposed to protect data privacy and virtually assemble the isolated data silos by cooperatively training models among organizations without breaching privacy and security. However, FL faces heterogeneity from various aspects, including data space, statistical, and system heterogeneity. For example, collaborative organizations without conflict of interest often come from different areas and have heterogeneous data from different feature spaces. Participants may also want to train heterogeneous personalized local models due to non-IID and imbalanced data distribution and various resource-constrained devices. Therefore, heterogeneous FL is proposed to address the problem of heterogeneity in FL. In this survey, we comprehensively investigate the domain of heterogeneous FL in terms of data space, statistical, system, and model heterogeneity. We first give an overview of FL, including its definition and categorization. Then, We propose a precise taxonomy of heterogeneous FL settings for each type of heterogeneity according to the problem setting and learning objective. We also investigate the transfer learning methodologies to tackle the heterogeneity in FL. We further present the applications of heterogeneous FL. Finally, we highlight the challenges and opportunities and envision promising future research directions toward new framework design and trustworthy approaches.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.

Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the pervasiveness of noise in graphs necessitates learning robust representations for real-world problems. To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding representations. Towards this end, in the presented survey, we broadly review recent progress of GSL methods for learning robust representations. Specifically, we first formulate a general paradigm of GSL, and then review state-of-the-art methods classified by how they model graph structures, followed by applications that incorporate the idea of GSL in other graph tasks. Finally, we point out some issues in current studies and discuss future directions.

Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司