Using low-resolution analog-to-digital converters (ADCs) is a valuable solution to decrease power consumption and cost in massive MIMO systems. Previous studies show that the performance gap between low and high-resolution systems gets more prominent as the signal-to-noise ratio (SNR) increases since the detection performance starts to saturate at some point due to the stochastic resonance (SR) phenomenon. In our previous work, we proposed new quantization and detection schemes for one-bit massive MIMO systems operating under frequency-flat fading. This paper offers a new frequency domain equalization (FDE) scheme that can work with the previously proposed pseudo-random quantization (PRQ) scheme to mitigate the effects of SR to support high-order modulation schemes such as $64$-QAM and $256$-QAM. Our equalizer is based on a projected quasi-Newton method for one-bit uplink massive MIMO systems applicable for orthogonal frequency division multiplexing (OFDM) and single carrier (SC) transmission under frequency-selective fading. The proposed low-complexity detector can outperform the benchmark detector from the literature with very similar complexity. We analyze the effects of PRQ under frequency-selective fading for different scenarios and show that the PRQ scheme can close the performance gap between SC and OFDM systems by simulations.
With the increased deployment of machine learning models in various real-world applications, researchers and practitioners alike have emphasized the need for explanations of model behaviour. To this end, two broad strategies have been outlined in prior literature to explain models. Post hoc explanation methods explain the behaviour of complex black-box models by highlighting features that are critical to model predictions; however, prior work has shown that these explanations may not be faithful, and even more concerning is our inability to verify them. Specifically, it is nontrivial to evaluate if a given attribution is correct with respect to the underlying model. Inherently interpretable models, on the other hand, circumvent these issues by explicitly encoding explanations into model architecture, meaning their explanations are naturally faithful and verifiable, but they often exhibit poor predictive performance due to their limited expressive power. In this work, we aim to bridge the gap between the aforementioned strategies by proposing Verifiability Tuning (VerT), a method that transforms black-box models into models that naturally yield faithful and verifiable feature attributions. We begin by introducing a formal theoretical framework to understand verifiability and show that attributions produced by standard models cannot be verified. We then leverage this framework to propose a method to build verifiable models and feature attributions out of fully trained black-box models. Finally, we perform extensive experiments on semi-synthetic and real-world datasets, and show that VerT produces models that (1) yield explanations that are correct and verifiable and (2) are faithful to the original black-box models they are meant to explain.
The Internet of Things (IoT) is growing rapidly and so the need of ensuring protection against cybersecurity attacks to IoT devices. In this scenario, Intrusion Detection Systems (IDSs) play a crucial role and data-driven IDSs based on machine learning (ML) have recently attracted more and more interest by the research community. While conventional ML-based IDSs are based on a centralized architecture where IoT devices share their data with a central server for model training, we propose a novel approach that is based on federated learning (FL). However, conventional FL is ineffective in the considered scenario, due to the high statistical heterogeneity of data collected by IoT devices. To overcome this limitation, we propose a three-tier FL-based architecture where IoT devices are clustered together based on their statistical properties. Clustering decisions are taken by means of a novel entropy-based strategy, which helps improve model training performance. We tested our solution on the CIC-ToN-IoT dataset: our clustering strategy increases intrusion detection performance with respect to a conventional FL approach up to +17% in terms of F1-score, along with a significant reduction of the number of training rounds.
Wireless communication is enabling billions of people to connect to each other and the internet, transforming every sector of the economy, and building the foundations for powerful new technologies that hold great promise to improve lives at an unprecedented rate and scale. The rapid increase in the number of devices and the associated demands for higher data rates and broader network coverage fuels the need for more robust wireless technologies. The key technology identified to address this problem is referred to as Cell-Free Massive MIMO (CF-mMIMO). CF-mMIMO is accompanied by many challenges, one of which is efficiently allocating limited resources. In this paper, we focus on a major resource allocation problem in wireless networks, namely the Pilot Assignment problem (PA). We show that PA is strongly NP-hard and that it does not admit a polynomial-time constant-factor approximation algorithm. Further, we show that PA cannot be approximated in polynomial time within $\mathcal{O}(K^2)$ (where $K$ is the number of users) when the system consists of at least three pilots. Finally, we present an approximation lower bound of $1.058$ (resp. $\epsilon|K|^2$, for $\epsilon >0$) in special cases where the system consists of exactly two (resp. three) pilots.
Recent studies on face forgery detection have shown satisfactory performance for methods involved in training datasets, but are not ideal enough for unknown domains. This motivates many works to improve the generalization, but forgery-irrelevant information, such as image background and identity, still exists in different domain features and causes unexpected clustering, limiting the generalization. In this paper, we propose a controllable guide-space (GS) method to enhance the discrimination of different forgery domains, so as to increase the forgery relevance of features and thereby improve the generalization. The well-designed guide-space can simultaneously achieve both the proper separation of forgery domains and the large distance between real-forgery domains in an explicit and controllable manner. Moreover, for better discrimination, we use a decoupling module to weaken the interference of forgery-irrelevant correlations between domains. Furthermore, we make adjustments to the decision boundary manifold according to the clustering degree of the same domain features within the neighborhood. Extensive experiments in multiple in-domain and cross-domain settings confirm that our method can achieve state-of-the-art generalization.
Machine learning models often need to be robust to noisy input data. The effect of real-world noise (which is often random) on model predictions is captured by a model's local robustness, i.e., the consistency of model predictions in a local region around an input. However, the na\"ive approach to computing local robustness based on Monte-Carlo sampling is statistically inefficient, leading to prohibitive computational costs for large-scale applications. In this work, we develop the first analytical estimators to efficiently compute local robustness of multi-class discriminative models using local linear function approximation and the multivariate Normal CDF. Through the derivation of these estimators, we show how local robustness is connected to concepts such as randomized smoothing and softmax probability. We also confirm empirically that these estimators accurately and efficiently compute the local robustness of standard deep learning models. In addition, we demonstrate these estimators' usefulness for various tasks involving local robustness, such as measuring robustness bias and identifying examples that are vulnerable to noise perturbation in a dataset. By developing these analytical estimators, this work not only advances conceptual understanding of local robustness, but also makes its computation practical, enabling the use of local robustness in critical downstream applications.
Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.
Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI), including computer vision, natural language processing and speech recognition. However, their superior performance comes at the considerable cost of computational complexity, which greatly hinders their applications in many resource-constrained devices, such as mobile phones and Internet of Things (IoT) devices. Therefore, methods and techniques that are able to lift the efficiency bottleneck while preserving the high accuracy of DNNs are in great demand in order to enable numerous edge AI applications. This paper provides an overview of efficient deep learning methods, systems and applications. We start from introducing popular model compression methods, including pruning, factorization, quantization as well as compact model design. To reduce the large design cost of these manual solutions, we discuss the AutoML framework for each of them, such as neural architecture search (NAS) and automated pruning and quantization. We then cover efficient on-device training to enable user customization based on the local data on mobile devices. Apart from general acceleration techniques, we also showcase several task-specific accelerations for point cloud, video and natural language processing by exploiting their spatial sparsity and temporal/token redundancy. Finally, to support all these algorithmic advancements, we introduce the efficient deep learning system design from both software and hardware perspectives.
While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.
In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.