亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Automated stance detection and related machine learning methods can provide useful insights for media monitoring and academic research. Many of these approaches require annotated training datasets, which limits their applicability for languages where these may not be readily available. This paper explores the applicability of large language models for automated stance detection in a challenging scenario, involving a morphologically complex, lower-resource language, and a socio-culturally complex topic, immigration. If the approach works in this case, it can be expected to perform as well or better in less demanding scenarios. We annotate a large set of pro and anti-immigration examples, and compare the performance of multiple language models as supervised learners. We also probe the usability of ChatGPT as an instructable zero-shot classifier for the same task. Supervised achieves acceptable performance, and ChatGPT yields similar accuracy. This is promising as a potentially simpler and cheaper alternative for text classification tasks, including in lower-resource languages. We further use the best-performing model to investigate diachronic trends over seven years in two corpora of Estonian mainstream and right-wing populist news sources, demonstrating the applicability of the approach for news analytics and media monitoring settings, and discuss correspondences between stance changes and real-world events.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

Social media platforms such as Instagram and Twitter have emerged as critical channels for drug marketing and illegal sale. Detecting and labeling online illicit drug trafficking activities becomes important in addressing this issue. However, the effectiveness of conventional supervised learning methods in detecting drug trafficking heavily relies on having access to substantial amounts of labeled data, while data annotation is time-consuming and resource-intensive. Furthermore, these models often face challenges in accurately identifying trafficking activities when drug dealers use deceptive language and euphemisms to avoid detection. To overcome this limitation, we conduct the first systematic study on leveraging large language models (LLMs), such as ChatGPT, to detect illicit drug trafficking activities on social media. We propose an analytical framework to compose \emph{knowledge-informed prompts}, which serve as the interface that humans can interact with and use LLMs to perform the detection task. Additionally, we design a Monte Carlo dropout based prompt optimization method to further to improve performance and interpretability. Our experimental findings demonstrate that the proposed framework outperforms other baseline language models in terms of drug trafficking detection accuracy, showing a remarkable improvement of nearly 12\%. By integrating prior knowledge and the proposed prompts, ChatGPT can effectively identify and label drug trafficking activities on social networks, even in the presence of deceptive language and euphemisms used by drug dealers to evade detection. The implications of our research extend to social networks, emphasizing the importance of incorporating prior knowledge and scenario-based prompts into analytical tools to improve online security and public safety.

Large vision-language models have achieved outstanding performance, but their size and computational requirements make their deployment on resource-constrained devices and time-sensitive tasks impractical. Model distillation, the process of creating smaller, faster models that maintain the performance of larger models, is a promising direction towards the solution. This paper investigates the distillation of visual representations in large teacher vision-language models into lightweight student models using a small- or mid-scale dataset. Notably, this study focuses on open-vocabulary out-of-distribution (OOD) generalization, a challenging problem that has been overlooked in previous model distillation literature. We propose two principles from vision and language modality perspectives to enhance student's OOD generalization: (1) by better imitating teacher's visual representation space, and carefully promoting better coherence in vision-language alignment with the teacher; (2) by enriching the teacher's language representations with informative and finegrained semantic attributes to effectively distinguish between different labels. We propose several metrics and conduct extensive experiments to investigate their techniques. The results demonstrate significant improvements in zero-shot and few-shot student performance on open-vocabulary out-of-distribution classification, highlighting the effectiveness of our proposed approaches. Our code will be released at //github.com/xuanlinli17/large_vlm_distillation_ood

Large language models (LLMs) are gaining increasing popularity in both academia and industry, owing to their unprecedented performance in various applications. As LLMs continue to play a vital role in both research and daily use, their evaluation becomes increasingly critical, not only at the task level, but also at the society level for better understanding of their potential risks. Over the past years, significant efforts have been made to examine LLMs from various perspectives. This paper presents a comprehensive review of these evaluation methods for LLMs, focusing on three key dimensions: what to evaluate, where to evaluate, and how to evaluate. Firstly, we provide an overview from the perspective of evaluation tasks, encompassing general natural language processing tasks, reasoning, medical usage, ethics, educations, natural and social sciences, agent applications, and other areas. Secondly, we answer the `where' and `how' questions by diving into the evaluation methods and benchmarks, which serve as crucial components in assessing performance of LLMs. Then, we summarize the success and failure cases of LLMs in different tasks. Finally, we shed light on several future challenges that lie ahead in LLMs evaluation. Our aim is to offer invaluable insights to researchers in the realm of LLMs evaluation, thereby aiding the development of more proficient LLMs. Our key point is that evaluation should be treated as an essential discipline to better assist the development of LLMs. We consistently maintain the related open-source materials at: //github.com/MLGroupJLU/LLM-eval-survey.

As large language models (LLMs) continue to advance, accurately and comprehensively evaluating their performance becomes increasingly challenging. Conventionally, human evaluations are considered the gold standard in natural language generation. Recent advancements incorporate state-of-the-art LLMs as proxies for human judges in evaluation processes. Nonetheless, the extent to which humans and LLMs are capable evaluators remains uncertain. This study aims to investigate the behavior of both crowd-sourced human and LLM-based judges when comparing outputs from different models. To accomplish this, we curate a dataset comprising intentionally flawed machine-generated answers. Our findings indicate that despite the potentially greater danger posed by factual errors, answers with factual errors were still rated more favorably compared to answers that were too short or contained grammatical errors. This highlights a concerning bias in the evaluation process. To address this issue, we propose to independently evaluate machine-generated text across multiple dimensions, rather than merging all the evaluation aspects into a single score. We instantiate this idea with the Elo rating system, resulting in the Multi-Elo Rating System. Empirical results from our study reveal that this proposed approach significantly enhances the quality of LLM-based evaluations, particularly in terms of factual accuracy. However, notable improvement is not observed in crowd-sourced-based evaluations, suggesting the need for further investigation and refinement.

The development of large language models (LLMs) such as ChatGPT has brought a lot of attention recently. However, their evaluation in the benchmark academic datasets remains under-explored due to the difficulty of evaluating the generative outputs produced by this model against the ground truth. In this paper, we aim to present a thorough evaluation of ChatGPT's performance on diverse academic datasets, covering tasks like question-answering, text summarization, code generation, commonsense reasoning, mathematical problem-solving, machine translation, bias detection, and ethical considerations. Specifically, we evaluate ChatGPT across 140 tasks and analyze 255K responses it generates in these datasets. This makes our work the largest evaluation of ChatGPT in NLP benchmarks. In short, our study aims to validate the strengths and weaknesses of ChatGPT in various tasks and provide insights for future research using LLMs. We also report a new emergent ability to follow multi-query instructions that we mostly found in ChatGPT and other instruction-tuned models. Our extensive evaluation shows that even though ChatGPT is capable of performing a wide variety of tasks, and may obtain impressive performance in several benchmark datasets, it is still far from achieving the ability to reliably solve many challenging tasks. By providing a thorough assessment of ChatGPT's performance across diverse NLP tasks, this paper sets the stage for a targeted deployment of ChatGPT-like LLMs in real-world applications.

Data economy relies on data-driven systems and complex machine learning applications are fueled by them. Unfortunately, however, machine learning models are exposed to fraudulent activities and adversarial attacks, which threaten their security and trustworthiness. In the last decade or so, the research interest on adversarial machine learning has grown significantly, revealing how learning applications could be severely impacted by effective attacks. Although early results of adversarial machine learning indicate the huge potential of the approach to specific domains such as image processing, still there is a gap in both the research literature and practice regarding how to generalize adversarial techniques in other domains and applications. Fraud detection is a critical defense mechanism for data economy, as it is for other applications as well, which poses several challenges for machine learning. In this work, we describe how attacks against fraud detection systems differ from other applications of adversarial machine learning, and propose a number of interesting directions to bridge this gap.

Emotions are experienced and expressed differently across the world. In order to use Large Language Models (LMs) for multilingual tasks that require emotional sensitivity, LMs must reflect this cultural variation in emotion. In this study, we investigate whether the widely-used multilingual LMs in 2023 reflect differences in emotional expressions across cultures and languages. We find that embeddings obtained from LMs (e.g., XLM-RoBERTa) are Anglocentric, and generative LMs (e.g., ChatGPT) reflect Western norms, even when responding to prompts in other languages. Our results show that multilingual LMs do not successfully learn the culturally appropriate nuances of emotion and we highlight possible research directions towards correcting this.

Graph clustering, which aims to divide the nodes in the graph into several distinct clusters, is a fundamental and challenging task. In recent years, deep graph clustering methods have been increasingly proposed and achieved promising performance. However, the corresponding survey paper is scarce and it is imminent to make a summary in this field. From this motivation, this paper makes the first comprehensive survey of deep graph clustering. Firstly, the detailed definition of deep graph clustering and the important baseline methods are introduced. Besides, the taxonomy of deep graph clustering methods is proposed based on four different criteria including graph type, network architecture, learning paradigm, and clustering method. In addition, through the careful analysis of the existing works, the challenges and opportunities from five perspectives are summarized. At last, the applications of deep graph clustering in four domains are presented. It is worth mentioning that a collection of state-of-the-art deep graph clustering methods including papers, codes, and datasets is available on GitHub. We hope this work will serve as a quick guide and help researchers to overcome challenges in this vibrant field.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.

北京阿比特科技有限公司