亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The increased demand of cyber security professionals has also increased the development of new platforms and tools that help those professionals to improve their offensive skills. One of these platforms is HackTheBox, an online cyber security training platform that delivers a controlled and safe environment for those professionals to explore virtual machines in a Capture the Flag (CTF) competition style. Most of the tools used in a CTF, or even on real-world Penetration Testing (Pentest), were developed for specific reasons so each tool usually has different input and output formats. These different formats make it hard for cyber security professionals and CTF competitors to develop an attack graph. In order to help cyber security professionals and CTF competitors to discover, select and exploit an attack vector, this paper presents Shadow Blade, a tool to aid users to interact with their attack vectors.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · binary · 情景 · AIM · 模型評估 ·
2024 年 2 月 20 日

A supervised feature selection method selects an appropriate but concise set of features to differentiate classes, which is highly expensive for large-scale datasets. Therefore, feature selection should aim at both minimizing the number of selected features and maximizing the accuracy of classification, or any other task. However, this crucial task is computationally highly demanding on many real-world datasets and requires a very efficient algorithm to reach a set of optimal features with a limited number of fitness evaluations. For this purpose, we have proposed the binary multi-objective coordinate search (MOCS) algorithm to solve large-scale feature selection problems. To the best of our knowledge, the proposed algorithm in this paper is the first multi-objective coordinate search algorithm. In this method, we generate new individuals by flipping a variable of the candidate solutions on the Pareto front. This enables us to investigate the effectiveness of each feature in the corresponding subset. In fact, this strategy can play the role of crossover and mutation operators to generate distinct subsets of features. The reported results indicate the significant superiority of our method over NSGA-II, on five real-world large-scale datasets, particularly when the computing budget is limited. Moreover, this simple hyper-parameter-free algorithm can solve feature selection much faster and more efficiently than NSGA-II.

In semantic segmentation, training data down-sampling is commonly performed due to limited resources, the need to adapt image size to the model input, or improve data augmentation. This down-sampling typically employs different strategies for the image data and the annotated labels. Such discrepancy leads to mismatches between the down-sampled color and label images. Hence, the training performance significantly decreases as the down-sampling factor increases. In this paper, we bring together the down-sampling strategies for the image data and the training labels. To that aim, we propose a novel framework for label down-sampling via soft-labeling that better conserves label information after down-sampling. Therefore, fully aligning soft-labels with image data to keep the distribution of the sampled pixels. This proposal also produces reliable annotations for under-represented semantic classes. Altogether, it allows training competitive models at lower resolutions. Experiments show that the proposal outperforms other down-sampling strategies. Moreover, state-of-the-art performance is achieved for reference benchmarks, but employing significantly less computational resources than foremost approaches. This proposal enables competitive research for semantic segmentation under resource constraints.

The rise of the Internet of Things (IoT) and mobile internet applications has spurred interest in location-based services (LBS) for commercial, military, and social applications. While the global positioning system (GPS) dominates outdoor localization, its efficacy wanes indoors due to signal challenges. Indoor localization systems leverage wireless technologies like Wi-Fi, ZigBee, Bluetooth, UWB, selecting based on context. Received signal strength indicator (RSSI) technology, known for its accuracy and simplicity, is widely adopted. This study employs machine learning algorithms in three phases: supervised regressors, supervised classifiers, and ensemble methods for RSSI-based indoor localization. Additionally, it introduces a weighted least squares technique and pseudo-linear solution approach to address non-linear RSSI measurement equations by approximating them with linear equations. An experimental testbed, utilizing diverse wireless technologies and anchor nodes, is designed for data collection, employing IoT cloud architectures. Pre-processing involves investigating filters for data refinement before algorithm training. The study employs machine learning models like linear regression, polynomial regression, support vector regression, random forest regression, and decision tree regressor across various wireless technologies. These models estimate the geographical coordinates of a moving target node, and their performance is evaluated using metrics such as accuracy, root mean square errors, precision, recall, sensitivity, coefficient of determinant, and the f1-score. The experiment's outcomes provide insights into the effectiveness of different supervised machine learning techniques in terms of localization accuracy and robustness in indoor environments.

As Internet censors rapidly evolve new blocking techniques, circumvention tools must also adapt and roll out new strategies to remain unblocked. But new strategies can be time consuming for circumventors to develop and deploy, and usually an update to one tool often requires significant additional effort to be ported to others. Moreover, distributing the updated application across different platforms poses its own set of challenges. In this paper, we introduce WATER (WebAssembly Transport Executables Runtime), a novel design that enables applications to use a WebAssembly-based application-layer (e.g., TLS) to wrap network connections and provide network transports. Deploying a new circumvention technique with WATER only requires distributing the WebAssembly Transport Module(WATM) binary and any transport-specific configuration, allowing dynamic transport updates without any change to the application itself. WATMs are also designed to be generic such that different applications using WATER can use the same WATM to rapidly deploy successful circumvention techniques to their own users, facilitating rapid interoperability between independent circumvention tools.

Generative AI (GenAI) systems offer opportunities to increase user productivity in many tasks, such as programming and writing. However, while they boost productivity in some studies, many others show that users are working ineffectively with GenAI systems and losing productivity. Despite the apparent novelty of these usability challenges, these 'ironies of automation' have been observed for over three decades in Human Factors research on the introduction of automation in domains such as aviation, automated driving, and intelligence. We draw on this extensive research alongside recent GenAI user studies to outline four key reasons for productivity loss with GenAI systems: a shift in users' roles from production to evaluation, unhelpful restructuring of workflows, interruptions, and a tendency for automation to make easy tasks easier and hard tasks harder. We then suggest how Human Factors research can also inform GenAI system design to mitigate productivity loss by using approaches such as continuous feedback, system personalization, ecological interface design, task stabilization, and clear task allocation. Thus, we ground developments in GenAI system usability in decades of Human Factors research, ensuring that the design of human-AI interactions in this rapidly moving field learns from history instead of repeating it.

APN functions play a big role as primitives in symmetric cryptography as building blocks that yield optimal resistance to differential attacks. In this note, we consider a recent extension of a biprojective APN family by G\"olo\u{g}lu defined on $\mathbb{F}_{2^{2m}}$. We show that this generalization yields functions equivalent to G\"olo\u{g}lu's original family if $3\nmid m$. If $3|m$ we show exactly how many inequivalent APN functions this new family contains. We also show that the family has the minimal image set size for an APN function and determine its Walsh spectrum, hereby settling some open problems. In our proofs, we leverage a group theoretic technique recently developed by G\"olo\u{g}lu and the author in conjunction with a group action on the set of projective polynomials.

Generative LLMs have been shown to effectively power AI-based code authoring tools that can suggest entire statements or blocks of code during code authoring. In this paper we present CodeCompose, an AI-assisted code authoring tool developed and deployed at Meta internally. CodeCompose is based on the InCoder LLM that merges generative capabilities with bi-directionality. We have scaled up CodeCompose to serve tens of thousands of developers at Meta, across 9 programming languages and several coding surfaces. We present our experience in making design decisions about the model and system architecture for CodeCompose that addresses these challenges. To release a LLM model at this scale, we needed to first ensure that it is sufficiently accurate. In a random sample of 20K source code files, depending on the language, we are able to reproduce hidden lines between 40% and 58% of the time, an improvement of 1.4x and 4.1x over a model trained only on public data. We gradually rolled CodeCompose out to developers. At the time of this writing, 16K developers have used it with 8% of their code coming directly from CodeCompose. To triangulate our numerical findings, we conduct a thematic analysis on the feedback from 70 developers. We find that 91.5% of the feedback is positive, with the most common themes being discovering APIs, dealing with boilerplate code, and accelerating coding. Meta continues to integrate this feedback into CodeCompose.

The presence of faulty or underactuated manipulators can disrupt the end-effector formation keeping of a team of manipulators. Based on two-link planar manipulators, we investigate this end-effector formation keeping problem for mixed fully- and under-actuated manipulators with flexible joints. In this case, the underactuated manipulators can comprise of active-passive (AP) manipulators, passive-active (PA) manipulators, or a combination thereof. We propose distributed control laws for the different types of manipulators to achieve and maintain the desired formation shape of the end-effectors. It is achieved by assigning virtual springs to the end-effectors for the fully-actuated ones and to the virtual end-effectors for the under-actuated ones. We study further the set of all desired and reachable shapes for the networked manipulators' end-effectors. Finally, we validate our analysis via numerical simulations.

Recommender systems are important and powerful tools for various personalized services. Traditionally, these systems use data mining and machine learning techniques to make recommendations based on correlations found in the data. However, relying solely on correlation without considering the underlying causal mechanism may lead to various practical issues such as fairness, explainability, robustness, bias, echo chamber and controllability problems. Therefore, researchers in related area have begun incorporating causality into recommendation systems to address these issues. In this survey, we review the existing literature on causal inference in recommender systems. We discuss the fundamental concepts of both recommender systems and causal inference as well as their relationship, and review the existing work on causal methods for different problems in recommender systems. Finally, we discuss open problems and future directions in the field of causal inference for recommendations.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

北京阿比特科技有限公司