We present a novel single-stage framework, Neural Photon Field (NePF), to address the ill-posed inverse rendering from multi-view images. Contrary to previous methods that recover the geometry, material, and illumination in multiple stages and extract the properties from various multi-layer perceptrons across different neural fields, we question such complexities and introduce our method - a single-stage framework that uniformly recovers all properties. NePF achieves this unification by fully utilizing the physical implication behind the weight function of neural implicit surfaces and the view-dependent radiance. Moreover, we introduce an innovative coordinate-based illumination model for rapid volume physically-based rendering. To regularize this illumination, we implement the subsurface scattering model for diffuse estimation. We evaluate our method on both real and synthetic datasets. The results demonstrate the superiority of our approach in recovering high-fidelity geometry and visual-plausible material attributes.
This paper presents an open-source dataset RflyMAD, a Multicopter Abnomal Dataset developed by Reliable Flight Control (Rfly) Group aiming to promote the development of research fields like fault detection and isolation (FDI) or health assessment (HA). The entire 114 GB dataset includes 11 types of faults under 6 flight statuses which are adapted from ADS-33 file to cover more occasions in which the multicopters have different mobility levels when faults occur. In the total 5629 flight cases, the fault time is up to 3283 minutes, and there are 2566 cases for software-in-the-loop (SIL) simulation, 2566 cases for hardware-in-the-loop (HIL) simulation and 497 cases for real flight. As it contains simulation data based on RflySim and real flight data, it is possible to improve the quantity while increasing the data quality. In each case, there are ULog, Telemetry log, Flight information and processed files for researchers to use and check. The RflyMAD dataset could be used as a benchmark for fault diagnosis methods and the support relationship between simulation data and real flight is verified through transfer learning methods. More methods as a baseline will be presented in the future, and RflyMAD will be updated with more data and types. In addition, the dataset and related toolkit can be accessed through //rfly-openha.github.io/documents/4_resources/dataset.html.
We present Reverse Projection, a novel projective texture mapping technique for painting a decal directly to the texture of a 3D object. Designed to be used in games, this technique works in real-time. By using projection techniques that are computed in local space textures and outward-looking, users using low-end android devices to high-end gaming desktops are able to enjoy the personalization of their assets. We believe our proposed pipeline is a step in improving the speed and versatility of model painting.
We introduce InseRF, a novel method for generative object insertion in the NeRF reconstructions of 3D scenes. Based on a user-provided textual description and a 2D bounding box in a reference viewpoint, InseRF generates new objects in 3D scenes. Recently, methods for 3D scene editing have been profoundly transformed, owing to the use of strong priors of text-to-image diffusion models in 3D generative modeling. Existing methods are mostly effective in editing 3D scenes via style and appearance changes or removing existing objects. Generating new objects, however, remains a challenge for such methods, which we address in this study. Specifically, we propose grounding the 3D object insertion to a 2D object insertion in a reference view of the scene. The 2D edit is then lifted to 3D using a single-view object reconstruction method. The reconstructed object is then inserted into the scene, guided by the priors of monocular depth estimation methods. We evaluate our method on various 3D scenes and provide an in-depth analysis of the proposed components. Our experiments with generative insertion of objects in several 3D scenes indicate the effectiveness of our method compared to the existing methods. InseRF is capable of controllable and 3D-consistent object insertion without requiring explicit 3D information as input. Please visit our project page at //mohamad-shahbazi.github.io/inserf.
In this work, we present WidthFormer, a novel transformer-based Bird's-Eye-View (BEV) 3D detection method tailored for real-time autonomous-driving applications. WidthFormer is computationally efficient, robust and does not require any special engineering effort to deploy. In this work, we propose a novel 3D positional encoding mechanism capable of accurately encapsulating 3D geometric information, which enables our model to generate high-quality BEV representations with only a single transformer decoder layer. This mechanism is also beneficial for existing sparse 3D object detectors. Inspired by the recently-proposed works, we further improve our model's efficiency by vertically compressing the image features when serving as attention keys and values. We also introduce two modules to compensate for potential information loss due to feature compression. Experimental evaluation on the widely-used nuScenes 3D object detection benchmark demonstrates that our method outperforms previous approaches across different 3D detection architectures. More importantly, our model is highly efficient. For example, when using $256\times 704$ input images, it achieves 1.5 ms and 2.8 ms latency on NVIDIA 3090 GPU and Horizon Journey-5 edge computing chips, respectively. Furthermore, WidthFormer also exhibits strong robustness to different degrees of camera perturbations. Our study offers valuable insights into the deployment of BEV transformation methods in real-world, complex road environments. Code is available at //github.com/ChenhongyiYang/WidthFormer .
Action recognition in videos poses a challenge due to its high computational cost, especially for Joint Space-Time video transformers (Joint VT). Despite their effectiveness, the excessive number of tokens in such architectures significantly limits their efficiency. In this paper, we propose HaltingVT, an efficient video transformer adaptively removing redundant video patch tokens, which is primarily composed of a Joint VT and a Glimpser module. Specifically, HaltingVT applies data-adaptive token reduction at each layer, resulting in a significant reduction in the overall computational cost. Besides, the Glimpser module quickly removes redundant tokens in shallow transformer layers, which may even be misleading for video recognition tasks based on our observations. To further encourage HaltingVT to focus on the key motion-related information in videos, we design an effective Motion Loss during training. HaltingVT acquires video analysis capabilities and token halting compression strategies simultaneously in a unified training process, without requiring additional training procedures or sub-networks. On the Mini-Kinetics dataset, we achieved 75.0% top-1 ACC with 24.2 GFLOPs, as well as 67.2% top-1 ACC with an extremely low 9.9 GFLOPs. The code is available at //github.com/dun-research/HaltingVT.
We present a novel framework for open-set Simultaneous Localization and Mapping (SLAM) in unstructured environments that uses segmentation to create a map of objects and geometric relationships between objects for localization. Our system consists of 1) a front-end mapping pipeline using a zero-shot segmentation model to extract object masks from images and track them across frames to generate an object-based map and 2) a frame alignment pipeline that uses the geometric consistency of objects to efficiently localize within maps taken in a variety of conditions. This approach is shown to be more robust to changes in lighting and appearance than traditional feature-based SLAM systems or global descriptor methods. This is established by evaluating SOS-SLAM on the Batvik seasonal dataset which includes drone flights collected over a coastal plot of southern Finland during different seasons and lighting conditions. Across flights during varying environmental conditions, our approach achieves higher recall than benchmark methods with precision of 1.0. SOS-SLAM localizes within a reference map up to 14x faster than other feature based approaches and has a map size less than 0.4% the size of the most compact other maps. When considering localization performance from varying viewpoints, our approach outperforms all benchmarks from the same viewpoint and most benchmarks from different viewpoints. SOS-SLAM is a promising new approach for SLAM in unstructured environments that is robust to changes in lighting and appearance and is more computationally efficient than other approaches. We release our code and datasets: //acl.mit.edu/SOS-SLAM/.
This work presents a novel reconfigurable architecture for Low Latency Graph Neural Network (LL-GNN) designs for particle detectors, delivering unprecedented low latency performance. Incorporating FPGA-based GNNs into particle detectors presents a unique challenge since it requires sub-microsecond latency to deploy the networks for online event selection with a data rate of hundreds of terabytes per second in the Level-1 triggers at the CERN Large Hadron Collider experiments. This paper proposes a novel outer-product based matrix multiplication approach, which is enhanced by exploiting the structured adjacency matrix and a column-major data layout. Moreover, a fusion step is introduced to further reduce the end-to-end design latency by eliminating unnecessary boundaries. Furthermore, a GNN-specific algorithm-hardware co-design approach is presented which not only finds a design with a much better latency but also finds a high accuracy design under given latency constraints. To facilitate this, a customizable template for this low latency GNN hardware architecture has been designed and open-sourced, which enables the generation of low-latency FPGA designs with efficient resource utilization using a high-level synthesis tool. Evaluation results show that our FPGA implementation is up to 9.0 times faster and achieves up to 13.1 times higher power efficiency than a GPU implementation. Compared to the previous FPGA implementations, this work achieves 6.51 to 16.7 times lower latency. Moreover, the latency of our FPGA design is sufficiently low to enable deployment of GNNs in a sub-microsecond, real-time collider trigger system, enabling it to benefit from improved accuracy. The proposed LL-GNN design advances the next generation of trigger systems by enabling sophisticated algorithms to process experimental data efficiently.
We present a novel approach for metric dense depth estimation based on the fusion of a single-view image and a sparse, noisy Radar point cloud. The direct fusion of heterogeneous Radar and image data, or their encodings, tends to yield dense depth maps with significant artifacts, blurred boundaries, and suboptimal accuracy. To circumvent this issue, we learn to augment versatile and robust monocular depth prediction with the dense metric scale induced from sparse and noisy Radar data. We propose a Radar-Camera framework for highly accurate and fine-detailed dense depth estimation with four stages, including monocular depth prediction, global scale alignment of monocular depth with sparse Radar points, quasi-dense scale estimation through learning the association between Radar points and image patches, and local scale refinement of dense depth using a scale map learner. Our proposed method significantly outperforms the state-of-the-art Radar-Camera depth estimation methods by reducing the mean absolute error (MAE) of depth estimation by 25.6% and 40.2% on the challenging nuScenes dataset and our self-collected ZJU-4DRadarCam dataset, respectively.
The rapid advances in Vision Transformer (ViT) refresh the state-of-the-art performances in various vision tasks, overshadowing the conventional CNN-based models. This ignites a few recent striking-back research in the CNN world showing that pure CNN models can achieve as good performance as ViT models when carefully tuned. While encouraging, designing such high-performance CNN models is challenging, requiring non-trivial prior knowledge of network design. To this end, a novel framework termed Mathematical Architecture Design for Deep CNN (DeepMAD) is proposed to design high-performance CNN models in a principled way. In DeepMAD, a CNN network is modeled as an information processing system whose expressiveness and effectiveness can be analytically formulated by their structural parameters. Then a constrained mathematical programming (MP) problem is proposed to optimize these structural parameters. The MP problem can be easily solved by off-the-shelf MP solvers on CPUs with a small memory footprint. In addition, DeepMAD is a pure mathematical framework: no GPU or training data is required during network design. The superiority of DeepMAD is validated on multiple large-scale computer vision benchmark datasets. Notably on ImageNet-1k, only using conventional convolutional layers, DeepMAD achieves 0.7% and 1.5% higher top-1 accuracy than ConvNeXt and Swin on Tiny level, and 0.8% and 0.9% higher on Small level.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.