As a challenging task, unsupervised person ReID aims to match the same identity with query images which does not require any labeled information. In general, most existing approaches focus on the visual cues only, leaving potentially valuable auxiliary metadata information (e.g., spatio-temporal context) unexplored. In the real world, such metadata is normally available alongside captured images, and thus plays an important role in separating several hard ReID matches. With this motivation in mind, we propose~\textbf{MGH}, a novel unsupervised person ReID approach that uses meta information to construct a hypergraph for feature learning and label refinement. In principle, the hypergraph is composed of camera-topology-aware hyperedges, which can model the heterogeneous data correlations across cameras. Taking advantage of label propagation on the hypergraph, the proposed approach is able to effectively refine the ReID results, such as correcting the wrong labels or smoothing the noisy labels. Given the refined results, We further present a memory-based listwise loss to directly optimize the average precision in an approximate manner. Extensive experiments on three benchmarks demonstrate the effectiveness of the proposed approach against the state-of-the-art.
Unsupervised domain adaptation (UDA) methods for person re-identification (re-ID) aim at transferring re-ID knowledge from labeled source data to unlabeled target data. Although achieving great success, most of them only use limited data from a single-source domain for model pre-training, making the rich labeled data insufficiently exploited. To make full use of the valuable labeled data, we introduce the multi-source concept into UDA person re-ID field, where multiple source datasets are used during training. However, because of domain gaps, simply combining different datasets only brings limited improvement. In this paper, we try to address this problem from two perspectives, \ie{} domain-specific view and domain-fusion view. Two constructive modules are proposed, and they are compatible with each other. First, a rectification domain-specific batch normalization (RDSBN) module is explored to simultaneously reduce domain-specific characteristics and increase the distinctiveness of person features. Second, a graph convolutional network (GCN) based multi-domain information fusion (MDIF) module is developed, which minimizes domain distances by fusing features of different domains. The proposed method outperforms state-of-the-art UDA person re-ID methods by a large margin, and even achieves comparable performance to the supervised approaches without any post-processing techniques.
Unsupervised Domain Adaptive (UDA) person re-identification (ReID) aims at adapting the model trained on a labeled source-domain dataset to a target-domain dataset without any further annotations. Most successful UDA-ReID approaches combine clustering-based pseudo-label prediction with representation learning and perform the two steps in an alternating fashion. However, offline interaction between these two steps may allow noisy pseudo labels to substantially hinder the capability of the model. In this paper, we propose a Group-aware Label Transfer (GLT) algorithm, which enables the online interaction and mutual promotion of pseudo-label prediction and representation learning. Specifically, a label transfer algorithm simultaneously uses pseudo labels to train the data while refining the pseudo labels as an online clustering algorithm. It treats the online label refinery problem as an optimal transport problem, which explores the minimum cost for assigning M samples to N pseudo labels. More importantly, we introduce a group-aware strategy to assign implicit attribute group IDs to samples. The combination of the online label refining algorithm and the group-aware strategy can better correct the noisy pseudo label in an online fashion and narrow down the search space of the target identity. The effectiveness of the proposed GLT is demonstrated by the experimental results (Rank-1 accuracy) for Market1501$\to$DukeMTMC (82.0\%) and DukeMTMC$\to$Market1501 (92.2\%), remarkably closing the gap between unsupervised and supervised performance on person re-identification.
Most of unsupervised person Re-Identification (Re-ID) works produce pseudo-labels by measuring the feature similarity without considering the distribution discrepancy among cameras, leading to degraded accuracy in label computation across cameras. This paper targets to address this challenge by studying a novel intra-inter camera similarity for pseudo-label generation. We decompose the sample similarity computation into two stage, i.e., the intra-camera and inter-camera computations, respectively. The intra-camera computation directly leverages the CNN features for similarity computation within each camera. Pseudo-labels generated on different cameras train the re-id model in a multi-branch network. The second stage considers the classification scores of each sample on different cameras as a new feature vector. This new feature effectively alleviates the distribution discrepancy among cameras and generates more reliable pseudo-labels. We hence train our re-id model in two stages with intra-camera and inter-camera pseudo-labels, respectively. This simple intra-inter camera similarity produces surprisingly good performance on multiple datasets, e.g., achieves rank-1 accuracy of 89.5% on the Market1501 dataset, outperforming the recent unsupervised works by 9+%, and is comparable with the latest transfer learning works that leverage extra annotations.
Unsupervised (or self-supervised) graph representation learning is essential to facilitate various graph data mining tasks when external supervision is unavailable. The challenge is to encode the information about the graph structure and the attributes associated with the nodes and edges into a low dimensional space. Most existing unsupervised methods promote similar representations across nodes that are topologically close. Recently, it was shown that leveraging additional graph-level information, e.g., information that is shared among all nodes, encourages the representations to be mindful of the global properties of the graph, which greatly improves their quality. However, in most graphs, there is significantly more structure that can be captured, e.g., nodes tend to belong to (multiple) clusters that represent structurally similar nodes. Motivated by this observation, we propose a graph representation learning method called Graph InfoClust (GIC), that seeks to additionally capture cluster-level information content. These clusters are computed by a differentiable K-means method and are jointly optimized by maximizing the mutual information between nodes of the same clusters. This optimization leads the node representations to capture richer information and nodal interactions, which improves their quality. Experiments show that GIC outperforms state-of-art methods in various downstream tasks (node classification, link prediction, and node clustering) with a 0.9% to 6.1% gain over the best competing approach, on average.
Graph-based semi-supervised learning (SSL) is an important learning problem where the goal is to assign labels to initially unlabeled nodes in a graph. Graph Convolutional Networks (GCNs) have recently been shown to be effective for graph-based SSL problems. GCNs inherently assume existence of pairwise relationships in the graph-structured data. However, in many real-world problems, relationships go beyond pairwise connections and hence are more complex. Hypergraphs provide a natural modeling tool to capture such complex relationships. In this work, we explore the use of GCNs for hypergraph-based SSL. In particular, we propose HyperGCN, an SSL method which uses a layer-wise propagation rule for convolutional neural networks operating directly on hypergraphs. To the best of our knowledge, this is the first principled adaptation of GCNs to hypergraphs. HyperGCN is able to encode both the hypergraph structure and hypernode features in an effective manner. Through detailed experimentation, we demonstrate HyperGCN's effectiveness at hypergraph-based SSL.
Being a cross-camera retrieval task, person re-identification suffers from image style variations caused by different cameras. The art implicitly addresses this problem by learning a camera-invariant descriptor subspace. In this paper, we explicitly consider this challenge by introducing camera style (CamStyle) adaptation. CamStyle can serve as a data augmentation approach that smooths the camera style disparities. Specifically, with CycleGAN, labeled training images can be style-transferred to each camera, and, along with the original training samples, form the augmented training set. This method, while increasing data diversity against over-fitting, also incurs a considerable level of noise. In the effort to alleviate the impact of noise, the label smooth regularization (LSR) is adopted. The vanilla version of our method (without LSR) performs reasonably well on few-camera systems in which over-fitting often occurs. With LSR, we demonstrate consistent improvement in all systems regardless of the extent of over-fitting. We also report competitive accuracy compared with the state of the art.
In recent years, a growing body of research has focused on the problem of person re-identification (re-id). The re-id techniques attempt to match the images of pedestrians from disjoint non-overlapping camera views. A major challenge of re-id is the serious intra-class variations caused by changing viewpoints. To overcome this challenge, we propose a deep neural network-based framework which utilizes the view information in the feature extraction stage. The proposed framework learns a view-specific network for each camera view with a cross-view Euclidean constraint (CV-EC) and a cross-view center loss (CV-CL). We utilize CV-EC to decrease the margin of the features between diverse views and extend the center loss metric to a view-specific version to better adapt the re-id problem. Moreover, we propose an iterative algorithm to optimize the parameters of the view-specific networks from coarse to fine. The experiments demonstrate that our approach significantly improves the performance of the existing deep networks and outperforms the state-of-the-art methods on the VIPeR, CUHK01, CUHK03, SYSU-mReId, and Market-1501 benchmarks.
Most existing person re-identification (re-id) methods require supervised model learning from a separate large set of pairwise labelled training data for every single camera pair. This significantly limits their scalability and usability in real-world large scale deployments with the need for performing re-id across many camera views. To address this scalability problem, we develop a novel deep learning method for transferring the labelled information of an existing dataset to a new unseen (unlabelled) target domain for person re-id without any supervised learning in the target domain. Specifically, we introduce an Transferable Joint Attribute-Identity Deep Learning (TJ-AIDL) for simultaneously learning an attribute-semantic and identitydiscriminative feature representation space transferrable to any new (unseen) target domain for re-id tasks without the need for collecting new labelled training data from the target domain (i.e. unsupervised learning in the target domain). Extensive comparative evaluations validate the superiority of this new TJ-AIDL model for unsupervised person re-id over a wide range of state-of-the-art methods on four challenging benchmarks including VIPeR, PRID, Market-1501, and DukeMTMC-ReID.
Most of the proposed person re-identification algorithms conduct supervised training and testing on single labeled datasets with small size, so directly deploying these trained models to a large-scale real-world camera network may lead to poor performance due to underfitting. It is challenging to incrementally optimize the models by using the abundant unlabeled data collected from the target domain. To address this challenge, we propose an unsupervised incremental learning algorithm, TFusion, which is aided by the transfer learning of the pedestrians' spatio-temporal patterns in the target domain. Specifically, the algorithm firstly transfers the visual classifier trained from small labeled source dataset to the unlabeled target dataset so as to learn the pedestrians' spatial-temporal patterns. Secondly, a Bayesian fusion model is proposed to combine the learned spatio-temporal patterns with visual features to achieve a significantly improved classifier. Finally, we propose a learning-to-rank based mutual promotion procedure to incrementally optimize the classifiers based on the unlabeled data in the target domain. Comprehensive experiments based on multiple real surveillance datasets are conducted, and the results show that our algorithm gains significant improvement compared with the state-of-art cross-dataset unsupervised person re-identification algorithms.
Sufficient training data is normally required to train deeply learned models. However, the number of pedestrian images per ID in person re-identification (re-ID) datasets is usually limited, since manually annotations are required for multiple camera views. To produce more data for training deeply learned models, generative adversarial network (GAN) can be leveraged to generate samples for person re-ID. However, the samples generated by vanilla GAN usually do not have labels. So in this paper, we propose a virtual label called Multi-pseudo Regularized Label (MpRL) and assign it to the generated images. With MpRL, the generated samples will be used as supplementary of real training data to train a deep model in a semi-supervised learning fashion. Considering data bias between generated and real samples, MpRL utilizes different contributions from predefined training classes. The contribution-based virtual labels are automatically assigned to generated samples to reduce ambiguous prediction in training. Meanwhile, MpRL only relies on predefined training classes without using extra classes. Furthermore, to reduce over-fitting, a regularized manner is applied to MpRL to regularize the learning process. To verify the effectiveness of MpRL, two state-of-the-art convolutional neural networks (CNNs) are adopted in our experiments. Experiments demonstrate that by assigning MpRL to generated samples, we can further improve the person re-ID performance on three datasets i.e., Market-1501, DukeMTMCreID, and CUHK03. The proposed method obtains +6.29%, +6.30% and +5.58% improvements in rank-1 accuracy over a strong CNN baseline respectively, and outperforms the state-of-the- art methods.