亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The emergence of Large Language Models (LLMs) and advancements in Artificial Intelligence (AI) offer an opportunity for computational social science research at scale. Building upon prior explorations of LLM agent design, our work introduces a simulated agent society where complex social relationships dynamically form and evolve over time. Agents are imbued with psychological drives and placed in a sandbox survival environment. We conduct an evaluation of the agent society through the lens of Thomas Hobbes's seminal Social Contract Theory (SCT). We analyze whether, as the theory postulates, agents seek to escape a brutish "state of nature" by surrendering rights to an absolute sovereign in exchange for order and security. Our experiments unveil an alignment: Initially, agents engage in unrestrained conflict, mirroring Hobbes's depiction of the state of nature. However, as the simulation progresses, social contracts emerge, leading to the authorization of an absolute sovereign and the establishment of a peaceful commonwealth founded on mutual cooperation. This congruence between our LLM agent society's evolutionary trajectory and Hobbes's theoretical account indicates LLMs' capability to model intricate social dynamics and potentially replicate forces that shape human societies. By enabling such insights into group behavior and emergent societal phenomena, LLM-driven multi-agent simulations, while unable to simulate all the nuances of human behavior, may hold potential for advancing our understanding of social structures, group dynamics, and complex human systems.

相關內容

Sequential Monte Carlo (SMC) methods are powerful tools for Bayesian inference but suffer from requiring many particles for accurate estimates, leading to high computational costs. We introduce persistent sampling (PS), an extension of SMC that mitigates this issue by allowing particles from previous iterations to persist. This generates a growing, weighted ensemble of particles distributed across iterations. In each iteration, PS utilizes multiple importance sampling and resampling from the mixture of all previous distributions to produce the next generation of particles. This addresses particle impoverishment and mode collapse, resulting in more accurate posterior approximations. Furthermore, this approach provides lower-variance marginal likelihood estimates for model comparison. Additionally, the persistent particles improve transition kernel adaptation for efficient exploration. Experiments on complex distributions show that PS consistently outperforms standard methods, achieving lower squared bias in posterior moment estimation and significantly reduced marginal likelihood errors, all at a lower computational cost. PS offers a robust, efficient, and scalable framework for Bayesian inference.

Recent advancements have witnessed the ascension of Large Language Models (LLMs), endowed with prodigious linguistic capabilities, albeit marred by shortcomings including factual inconsistencies and opacity. Conversely, Knowledge Graphs (KGs) harbor verifiable knowledge and symbolic reasoning prowess, thereby complementing LLMs' deficiencies. Against this backdrop, the synergy between KGs and LLMs emerges as a pivotal research direction. Our contribution in this paper is a comprehensive dissection of the latest developments in integrating KGs with LLMs. Through meticulous analysis of their confluence points and methodologies, we introduce a unifying framework designed to elucidate and stimulate further exploration among scholars engaged in cognate disciplines. This framework serves a dual purpose: it consolidates extant knowledge while simultaneously delineating novel avenues for real-world deployment, thereby amplifying the translational impact of academic research.

Federated Learning (FL) in the Internet of Things (IoT) environments can enhance machine learning by utilising decentralised data, but at the same time, it might introduce significant privacy and security concerns due to the constrained nature of IoT devices. This represents a research challenge that we aim to address in this paper. We systematically analysed recent literature to identify privacy threats in FL within IoT environments, and evaluate the defensive measures that can be employed to mitigate these threats. Using a Systematic Literature Review (SLR) approach, we searched five publication databases (Scopus, IEEE Xplore, Wiley, ACM, and Science Direct), collating relevant papers published between 2017 and April 2024, a period which spans from the introduction of FL until now. Guided by the PRISMA protocol, we selected 49 papers to focus our systematic review on. We analysed these papers, paying special attention to the privacy threats and defensive measures -- specifically within the context of IoT -- using inclusion and exclusion criteria tailored to highlight recent advances and critical insights. We identified various privacy threats, including inference attacks, poisoning attacks, and eavesdropping, along with defensive measures such as Differential Privacy and Secure Multi-Party Computation. These defences were evaluated for their effectiveness in protecting privacy without compromising the functional integrity of FL in IoT settings. Our review underscores the necessity for robust and efficient privacy-preserving strategies tailored for IoT environments. Notably, there is a need for strategies against replay, evasion, and model stealing attacks. Exploring lightweight defensive measures and emerging technologies such as blockchain may help improve the privacy of FL in IoT, leading to the creation of FL models that can operate under variable network conditions.

Large language models (LLMs) have demonstrated impressive versatility across numerous tasks, yet their generalization capabilities remain poorly understood. To investigate these behaviors, arithmetic tasks serve as important venues. In previous studies, seemingly unrelated mysteries still exist -- (1) models with appropriate positional embeddings can correctly perform longer unseen arithmetic operations such as addition, but their effectiveness varies in more complex tasks like multiplication; (2) models perform well for longer unseen cases in modular addition under specific moduli (e.g., modulo 100) but struggle under very close moduli (e.g., modulo 101), regardless of the positional encoding used. We believe previous studies have been treating the symptoms rather than addressing the root cause -- they have paid excessive attention to improving model components, while overlooking the differences in task properties that may be the real drivers. This is confirmed by our unified theoretical framework for different arithmetic scenarios. For example, unlike multiplication, the digital addition task has the property of translation invariance which naturally aligns with the relative positional encoding, and this combination leads to successful generalization of addition to unseen longer domains. The discrepancy in operations modulo 100 and 101 arises from the base. Modulo 100, unlike 101, is compatible with the decimal system (base 10), such that unseen information in digits beyond the units digit and the tens digit is actually not needed for the task. Extensive experiments with GPT-like models validate our theoretical predictions. These findings deepen our understanding of the generalization mechanisms, and facilitate more data-efficient model training and objective-oriented AI alignment.

The design of energy-efficient, high-performance, and reliable Convolutional Neural Network (CNN) accelerators involves significant challenges due to complex power and thermal management issues. This paper introduces SAfEPaTh, a novel system-level approach for accurately estimating power and temperature in tile-based CNN accelerators. By addressing both steady-state and transient-state scenarios, SAfEPaTh effectively captures the dynamic effects of pipeline bubbles in interlayer pipelines, utilizing real CNN workloads for comprehensive evaluation. Unlike traditional methods, it eliminates the need for circuit-level simulations or on-chip measurements. Our methodology leverages TANIA, a cutting-edge hybrid digital-analog tile-based accelerator featuring analog-in-memory computing cores alongside digital cores. Through rigorous simulation results using the ResNet18 model, we demonstrate SAfEPaTh's capability to accurately estimate power and temperature within 500 seconds, encompassing CNN model accelerator mapping exploration and detailed power and thermal estimations. This efficiency and accuracy make SAfEPaTh an invaluable tool for designers, enabling them to optimize performance while adhering to stringent power and thermal constraints. Furthermore, SAfEPaTh's adaptability extends its utility across various CNN models and accelerator architectures, underscoring its broad applicability in the field. This study contributes significantly to the advancement of energy-efficient and reliable CNN accelerator designs, addressing critical challenges in dynamic power and thermal management.

Question Answering (QA) effectively evaluates language models' reasoning and knowledge depth. While QA datasets are plentiful in areas like general domain and biomedicine, academic chemistry is less explored. Chemical QA plays a crucial role in both education and research by effectively translating complex chemical information into readily understandable format. Addressing this gap, we introduce ScholarChemQA, a large-scale QA dataset constructed from chemical papers. This dataset reflects typical real-world challenges, including an imbalanced data distribution and a substantial amount of unlabeled data that can be potentially useful. Correspondingly, we introduce a QAMatch model, specifically designed to effectively answer chemical questions by fully leveraging our collected data. We first address the issue of imbalanced label distribution by re-weighting the instance-wise loss based on the inverse frequency of each class, ensuring minority classes are not dominated by majority ones during optimization. Next, we utilize the unlabeled data to enrich the learning process, generating a variety of augmentations based on a SoftMix operation and ensuring their predictions align with the same target, i.e., pseudo-labels. To ensure the quality of the pseudo-labels, we propose a calibration procedure aimed at closely aligning the pseudo-label estimates of individual samples with a desired ground truth distribution. Experiments show that our QAMatch significantly outperforms the recent similar-scale baselines and Large Language Models (LLMs) not only on our ScholarChemQA dataset but also on four benchmark datasets. We hope our benchmark and model can facilitate and promote more research on chemical QA.

The widespread use of Deep Neural Networks (DNNs) has recently resulted in their application to challenging scientific visualization tasks. While advanced DNNs demonstrate impressive generalization abilities, understanding factors like prediction quality, confidence, robustness, and uncertainty is crucial. These insights aid application scientists in making informed decisions. However, DNNs lack inherent mechanisms to measure prediction uncertainty, prompting the creation of distinct frameworks for constructing robust uncertainty-aware models tailored to various visualization tasks. In this work, we develop uncertainty-aware implicit neural representations to model steady-state vector fields effectively. We comprehensively evaluate the efficacy of two principled deep uncertainty estimation techniques: (1) Deep Ensemble and (2) Monte Carlo Dropout, aimed at enabling uncertainty-informed visual analysis of features within steady vector field data. Our detailed exploration using several vector data sets indicate that uncertainty-aware models generate informative visualization results of vector field features. Furthermore, incorporating prediction uncertainty improves the resilience and interpretability of our DNN model, rendering it applicable for the analysis of non-trivial vector field data sets.

Synthetic datasets constructed from formal languages allow fine-grained examination of the learning and generalization capabilities of machine learning systems for sequence classification. This article presents a new benchmark for machine learning systems on sequence classification called MLRegTest, which contains training, development, and test sets from 1,800 regular languages. Different kinds of formal languages represent different kinds of long-distance dependencies, and correctly identifying long-distance dependencies in sequences is a known challenge for ML systems to generalize successfully. MLRegTest organizes its languages according to their logical complexity (monadic second order, first order, propositional, or monomial expressions) and the kind of logical literals (string, tier-string, subsequence, or combinations thereof). The logical complexity and choice of literal provides a systematic way to understand different kinds of long-distance dependencies in regular languages, and therefore to understand the capacities of different ML systems to learn such long-distance dependencies. Finally, the performance of different neural networks (simple RNN, LSTM, GRU, transformer) on MLRegTest is examined. The main conclusion is that performance depends significantly on the kind of test set, the class of language, and the neural network architecture.

The present work provides an application of Global Sensitivity Analysis to supervised machine learning methods such as Random Forests. These methods act as black boxes, selecting features in high--dimensional data sets as to provide accurate classifiers in terms of prediction when new data are fed into the system. In supervised machine learning, predictors are generally ranked by importance based on their contribution to the final prediction. Global Sensitivity Analysis is primarily used in mathematical modelling to investigate the effect of the uncertainties of the input variables on the output. We apply it here as a novel way to rank the input features by their importance to the explainability of the data generating process, shedding light on how the response is determined by the dependence structure of its predictors. A simulation study shows that our proposal can be used to explore what advances can be achieved either in terms of efficiency, explanatory ability, or simply by way of confirming existing results.

Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.

北京阿比特科技有限公司