亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study introduces an efficacious approach, Masked Collaborative Contrast (MCC), to emphasize semantic regions in weakly supervised semantic segmentation. MCC adroitly incorporates concepts from masked image modeling and contrastive learning to devise Transformer blocks that induce keys to contract towards semantically pertinent regions. Unlike prevalent techniques that directly eradicate patch regions in the input image when generating masks, we scrutinize the neighborhood relations of patch tokens by exploring masks considering keys on the affinity matrix. Moreover, we generate positive and negative samples in contrastive learning by utilizing the masked local output and contrasting it with the global output. Elaborate experiments on commonly employed datasets evidences that the proposed MCC mechanism effectively aligns global and local perspectives within the image, attaining impressive performance. The source code is available at \url{//github.com/fwu11/MCC}.

相關內容

Although unsupervised domain adaptation (UDA) is a promising direction to alleviate domain shift, they fall short of their supervised counterparts. In this work, we investigate relatively less explored semi-supervised domain adaptation (SSDA) for medical image segmentation, where access to a few labeled target samples can improve the adaptation performance substantially. Specifically, we propose a two-stage training process. First, an encoder is pre-trained in a self-learning paradigm using a novel domain-content disentangled contrastive learning (CL) along with a pixel-level feature consistency constraint. The proposed CL enforces the encoder to learn discriminative content-specific but domain-invariant semantics on a global scale from the source and target images, whereas consistency regularization enforces the mining of local pixel-level information by maintaining spatial sensitivity. This pre-trained encoder, along with a decoder, is further fine-tuned for the downstream task, (i.e. pixel-level segmentation) using a semi-supervised setting. Furthermore, we experimentally validate that our proposed method can easily be extended for UDA settings, adding to the superiority of the proposed strategy. Upon evaluation on two domain adaptive image segmentation tasks, our proposed method outperforms the SoTA methods, both in SSDA and UDA settings. Code is available at //github.com/hritam-98/GFDA-disentangled

Continual learning (CL) aims to incrementally learn different tasks (such as classification) in a non-stationary data stream without forgetting old ones. Most CL works focus on tackling catastrophic forgetting under a learning-from-scratch paradigm. However, with the increasing prominence of foundation models, pre-trained models equipped with informative representations have become available for various downstream requirements. Several CL methods based on pre-trained models have been explored, either utilizing pre-extracted features directly (which makes bridging distribution gaps challenging) or incorporating adaptors (which may be subject to forgetting). In this paper, we propose a concise and effective approach for CL with pre-trained models. Given that forgetting occurs during parameter updating, we contemplate an alternative approach that exploits training-free random projectors and class-prototype accumulation, which thus bypasses the issue. Specifically, we inject a frozen Random Projection layer with nonlinear activation between the pre-trained model's feature representations and output head, which captures interactions between features with expanded dimensionality, providing enhanced linear separability for class-prototype-based CL. We also demonstrate the importance of decorrelating the class-prototypes to reduce the distribution disparity when using pre-trained representations. These techniques prove to be effective and circumvent the problem of forgetting for both class- and domain-incremental continual learning. Compared to previous methods applied to pre-trained ViT-B/16 models, we reduce final error rates by between 10\% and 62\% on seven class-incremental benchmark datasets, despite not using any rehearsal memory. We conclude that the full potential of pre-trained models for simple, effective, and fast continual learning has not hitherto been fully tapped.

While originally designed for image generation, diffusion models have recently shown to provide excellent pretrained feature representations for semantic segmentation. Intrigued by this result, we set out to explore how well diffusion-pretrained representations generalize to new domains, a crucial ability for any representation. We find that diffusion-pretraining achieves extraordinary domain generalization results for semantic segmentation, outperforming both supervised and self-supervised backbone networks. Motivated by this, we investigate how to utilize the model's unique ability of taking an input prompt, in order to further enhance its cross-domain performance. We introduce a scene prompt and a prompt randomization strategy to help further disentangle the domain-invariant information when training the segmentation head. Moreover, we propose a simple but highly effective approach for test-time domain adaptation, based on learning a scene prompt on the target domain in an unsupervised manner. Extensive experiments conducted on four synthetic-to-real and clear-to-adverse weather benchmarks demonstrate the effectiveness of our approaches. Without resorting to any complex techniques, such as image translation, augmentation, or rare-class sampling, we set a new state-of-the-art on all benchmarks. Our implementation will be publicly available at \url{//github.com/ETHRuiGong/PTDiffSeg}.

Recently, unsupervised image-to-image translation methods based on contrastive learning have achieved state-of-the-art results in many tasks. However, in the previous works, the negatives are sampled from the input image itself, which inspires us to design a data augmentation method to improve the quality of the selected negatives. Moreover, the previous methods only preserve the content consistency via patch-wise contrastive learning in the embedding space, which ignores the domain consistency between the generated images and the real images of the target domain. In this paper, we propose a novel unsupervised image-to-image translation framework based on multi-cropping contrastive learning and domain consistency, called MCDUT. Specifically, we obtain the multi-cropping views via the center-cropping and the random-cropping with the aim of further generating the high-quality negative examples. To constrain the embeddings in the deep feature space, we formulate a new domain consistency loss, which encourages the generated images to be close to the real images in the embedding space of the same domain. Furthermore, we present a dual coordinate attention network by embedding positional information into the channel, which called DCA. We employ the DCA network in the design of generator, which makes the generator capture the horizontal and vertical global information of dependency. In many image-to-image translation tasks, our method achieves state-of-the-art results, and the advantages of our method have been proven through extensive comparison experiments and ablation research.

The combination of audio and vision has long been a topic of interest in the multi-modal community. Recently, a new audio-visual segmentation (AVS) task has been introduced, aiming to locate and segment the sounding objects in a given video. This task demands audio-driven pixel-level scene understanding for the first time, posing significant challenges. In this paper, we propose AVSegFormer, a novel framework for AVS tasks that leverages the transformer architecture. Specifically, we introduce audio queries and learnable queries into the transformer decoder, enabling the network to selectively attend to interested visual features. Besides, we present an audio-visual mixer, which can dynamically adjust visual features by amplifying relevant and suppressing irrelevant spatial channels. Additionally, we devise an intermediate mask loss to enhance the supervision of the decoder, encouraging the network to produce more accurate intermediate predictions. Extensive experiments demonstrate that AVSegFormer achieves state-of-the-art results on the AVS benchmark. The code is available at //github.com/vvvb-github/AVSegFormer.

The objective of Audio-Visual Segmentation (AVS) is to localise the sounding objects within visual scenes by accurately predicting pixel-wise segmentation masks. To tackle the task, it involves a comprehensive consideration of both the data and model aspects. In this paper, first, we initiate a novel pipeline for generating artificial data for the AVS task without human annotating. We leverage existing image segmentation and audio datasets to match the image-mask pairs with its corresponding audio samples with the linkage of category labels, that allows us to effortlessly compose (image, audio, mask) triplets for training AVS models. The pipeline is annotation-free and scalable to cover a large number of categories. Additionally, we introduce a lightweight approach SAMA-AVS to adapt the pre-trained segment anything model~(SAM) to the AVS task. By introducing only a small number of trainable parameters with adapters, the proposed model can effectively achieve adequate audio-visual fusion and interaction in the encoding stage with vast majority of parameters fixed. We conduct extensive experiments, and the results show our proposed model remarkably surpasses other competing methods. Moreover, by using the proposed model pretrained with our synthetic data, the performance on real AVSBench data is further improved, achieving 83.17 mIoU on S4 subset and 66.95 mIoU on MS3 set.

Polygonal meshes have become the standard for discretely approximating 3D shapes, thanks to their efficiency and high flexibility in capturing non-uniform shapes. This non-uniformity, however, leads to irregularity in the mesh structure, making tasks like segmentation of 3D meshes particularly challenging. Semantic segmentation of 3D mesh has been typically addressed through CNN-based approaches, leading to good accuracy. Recently, transformers have gained enough momentum both in NLP and computer vision fields, achieving performance at least on par with CNN models, supporting the long-sought architecture universalism. Following this trend, we propose a transformer-based method for semantic segmentation of 3D mesh motivated by a better modeling of the graph structure of meshes, by means of global attention mechanisms. In order to address the limitations of standard transformer architectures in modeling relative positions of non-sequential data, as in the case of 3D meshes, as well as in capturing the local context, we perform positional encoding by means the Laplacian eigenvectors of the adjacency matrix, replacing the traditional sinusoidal positional encodings, and by introducing clustering-based features into the self-attention and cross-attention operators. Experimental results, carried out on three sets of the Shape COSEG Dataset, on the human segmentation dataset proposed in Maron et al., 2017 and on the ShapeNet benchmark, show how the proposed approach yields state-of-the-art performance on semantic segmentation of 3D meshes.

Diffusion models have demonstrated excellent performance in image generation. Although various few-shot semantic segmentation (FSS) models with different network structures have been proposed, performance improvement has reached a bottleneck. This paper presents the first work to leverage the diffusion model for FSS task, called DifFSS. DifFSS, a novel FSS paradigm, can further improve the performance of the state-of-the-art FSS models by a large margin without modifying their network structure. Specifically, we utilize the powerful generation ability of diffusion models to generate diverse auxiliary support images by using the semantic mask, scribble or soft HED boundary of the support image as control conditions. This generation process simulates the variety within the class of the query image, such as color, texture variation, lighting, $etc$. As a result, FSS models can refer to more diverse support images, yielding more robust representations, thereby achieving a consistent improvement in segmentation performance. Extensive experiments on three publicly available datasets based on existing advanced FSS models demonstrate the effectiveness of the diffusion model for FSS task. Furthermore, we explore in detail the impact of different input settings of the diffusion model on segmentation performance. Hopefully, this completely new paradigm will bring inspiration to the study of FSS task integrated with AI-generated content.

A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.

Language model based pre-trained models such as BERT have provided significant gains across different NLP tasks. In this paper, we study different types of pre-trained transformer based models such as auto-regressive models (GPT-2), auto-encoder models (BERT), and seq2seq models (BART) for conditional data augmentation. We show that prepending the class labels to text sequences provides a simple yet effective way to condition the pre-trained models for data augmentation. On three classification benchmarks, pre-trained Seq2Seq model outperforms other models. Further, we explore how different pre-trained model based data augmentation differs in-terms of data diversity, and how well such methods preserve the class-label information.

北京阿比特科技有限公司