Early detection of anomalies in medical images such as brain MRI is highly relevant for diagnosis and treatment of many conditions. Supervised machine learning methods are limited to a small number of pathologies where there is good availability of labeled data. In contrast, unsupervised anomaly detection (UAD) has the potential to identify a broader spectrum of anomalies by spotting deviations from normal patterns. Our research demonstrates that existing state-of-the-art UAD approaches do not generalise well to diverse types of anomalies in realistic multi-modal MR data. To overcome this, we introduce a new UAD method named Aggregated Normative Diffusion (ANDi). ANDi operates by aggregating differences between predicted denoising steps and ground truth backwards transitions in Denoising Diffusion Probabilistic Models (DDPMs) that have been trained on pyramidal Gaussian noise. We validate ANDi against three recent UAD baselines, and across three diverse brain MRI datasets. We show that ANDi, in some cases, substantially surpasses these baselines and shows increased robustness to varying types of anomalies. Particularly in detecting multiple sclerosis (MS) lesions, ANDi achieves improvements of up to 178% in terms of AUPRC.
In recent years, text summarization methods have attracted much attention again thanks to the researches on neural network models. Most of the current text summarization methods based on neural network models are supervised methods which need large-scale datasets. However, large-scale datasets are difficult to obtain in practical applications. In this paper, we model the task of extractive text summarization methods from the perspective of Information Theory, and then describe the unsupervised extractive methods with a uniform framework. To improve the feature distribution and to decrease the mutual information of summarization sentences, we propose a new sentence extraction strategy which can be applied to existing unsupervised extractive methods. Experiments are carried out on different datasets, and results show that our strategy is indeed effective and in line with expectations.
Influential diagnosis is an integral part of data analysis, of which most existing methodological frameworks presume a deterministic submodel and are designed for low-dimensional data (i.e., the number of predictors p smaller than the sample size n). However, the stochastic selection of a submodel from high-dimensional data where p exceeds n has become ubiquitous. Thus, methods for identifying observations that could exert undue influence on the choice of a submodel can play an important role in this setting. To date, discussion of this topic has been limited, falling short in two domains: (i) constrained ability to detect multiple influential points, and (ii) applicability only in restrictive settings. After describing the problem, we characterize and formalize the concept of influential observations on variable selection. Then, we propose a generalized diagnostic measure, extended from an available metric accommodating different model selectors and multiple influential observations, the asymptotic distribution of which is subsequently establish large p, thus providing guidelines to ascertain influential observations. A high-dimensional clustering procedure is further incorporated into our proposed scheme to detect multiple influential points. Simulation is conducted to assess the performances of various diagnostic approaches. The proposed procedure further demonstrates its value in improving predictive power when analyzing thermal-stimulated pain based on fMRI data.
The application of supervised learning techniques in combination with model predictive control (MPC) has recently generated significant interest, particularly in the area of approximate explicit MPC, where function approximators like deep neural networks are used to learn the MPC policy via optimal state-action pairs generated offline. While the aim of approximate explicit MPC is to closely replicate the MPC policy, substituting online optimization with a trained neural network, the performance guarantees that come with solving the online optimization problem are typically lost. This paper considers an alternative strategy, where supervised learning is used to learn the optimal value function offline instead of learning the optimal policy. This can then be used as the cost-to-go function in a myopic MPC with a very short prediction horizon, such that the online computation burden reduces significantly without affecting the controller performance. This approach differs from existing work on value function approximations in the sense that it learns the cost-to-go function by using offline-collected state-value pairs, rather than closed-loop performance data. The cost of generating the state-value pairs used for training is addressed using a sensitivity-based data augmentation scheme.
To investigate causal mechanisms, causal mediation analysis decomposes the total treatment effect into the natural direct and indirect effects. This paper examines the estimation of the direct and indirect effects in a general treatment effect model, where the treatment can be binary, multi-valued, continuous, or a mixture. We propose generalized weighting estimators with weights estimated by solving an expanding set of equations. Under some sufficient conditions, we show that the proposed estimators are consistent and asymptotically normal. Specifically, when the treatment is discrete, the proposed estimators attain the semiparametric efficiency bounds. Meanwhile, when the treatment is continuous, the convergence rates of the proposed estimators are slower than $N^{-1/2}$; however, they are still more efficient than that constructed from the true weighting function. A simulation study reveals that our estimators exhibit a satisfactory finite-sample performance, while an application shows their practical value
We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.
Human doctors with well-structured medical knowledge can diagnose a disease merely via a few conversations with patients about symptoms. In contrast, existing knowledge-grounded dialogue systems often require a large number of dialogue instances to learn as they fail to capture the correlations between different diseases and neglect the diagnostic experience shared among them. To address this issue, we propose a more natural and practical paradigm, i.e., low-resource medical dialogue generation, which can transfer the diagnostic experience from source diseases to target ones with a handful of data for adaptation. It is capitalized on a commonsense knowledge graph to characterize the prior disease-symptom relations. Besides, we develop a Graph-Evolving Meta-Learning (GEML) framework that learns to evolve the commonsense graph for reasoning disease-symptom correlations in a new disease, which effectively alleviates the needs of a large number of dialogues. More importantly, by dynamically evolving disease-symptom graphs, GEML also well addresses the real-world challenges that the disease-symptom correlations of each disease may vary or evolve along with more diagnostic cases. Extensive experiment results on the CMDD dataset and our newly-collected Chunyu dataset testify the superiority of our approach over state-of-the-art approaches. Besides, our GEML can generate an enriched dialogue-sensitive knowledge graph in an online manner, which could benefit other tasks grounded on knowledge graph.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.
We study how to generate captions that are not only accurate in describing an image but also discriminative across different images. The problem is both fundamental and interesting, as most machine-generated captions, despite phenomenal research progresses in the past several years, are expressed in a very monotonic and featureless format. While such captions are normally accurate, they often lack important characteristics in human languages - distinctiveness for each caption and diversity for different images. To address this problem, we propose a novel conditional generative adversarial network for generating diverse captions across images. Instead of estimating the quality of a caption solely on one image, the proposed comparative adversarial learning framework better assesses the quality of captions by comparing a set of captions within the image-caption joint space. By contrasting with human-written captions and image-mismatched captions, the caption generator effectively exploits the inherent characteristics of human languages, and generates more discriminative captions. We show that our proposed network is capable of producing accurate and diverse captions across images.
Automatically creating the description of an image using any natural languages sentence like English is a very challenging task. It requires expertise of both image processing as well as natural language processing. This paper discuss about different available models for image captioning task. We have also discussed about how the advancement in the task of object recognition and machine translation has greatly improved the performance of image captioning model in recent years. In addition to that we have discussed how this model can be implemented. In the end, we have also evaluated the performance of model using standard evaluation matrices.