亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Data storytelling is powerful for communicating data insights, but it requires diverse skills and considerable effort from human creators. Recent research has widely explored the potential for artificial intelligence (AI) to support and augment humans in data storytelling. However, there lacks a systematic review to understand data storytelling tools from the perspective of human-AI collaboration, which hinders researchers from reflecting on the existing collaborative tool designs that promote humans' and AI's advantages and mitigate their shortcomings. This paper investigated existing tools with a framework from two perspectives: the stages in the storytelling workflow where a tool serves, including analysis, planning, implementation, and communication, and the roles of humans and AI in each stage, such as creators, assistants, optimizers, and reviewers. Through our analysis, we recognize the common collaboration patterns in existing tools, summarize lessons learned from these patterns, and further illustrate research opportunities for human-AI collaboration in data storytelling.

相關內容

這個新版本的工具會議系列恢復了從1989年到2012年的50個會議的傳統。工具最初是“面向對象語言和系統的技術”,后來發展到包括軟件技術的所有創新方面。今天許多最重要的軟件概念都是在這里首次引入的。2019年TOOLS 50+1在俄羅斯喀山附近舉行,以同樣的創新精神、對所有與軟件相關的事物的熱情、科學穩健性和行業適用性的結合以及歡迎該領域所有趨勢和社區的開放態度,延續了該系列。 官網鏈接: · HTTPS · Better · 穩健性 · 相似度 ·
2023 年 11 月 8 日

A generative AI model can generate extremely realistic-looking content, posing growing challenges to the authenticity of information. To address the challenges, watermark has been leveraged to detect AI-generated content. Specifically, a watermark is embedded into an AI-generated content before it is released. A content is detected as AI-generated if a similar watermark can be decoded from it. In this work, we perform a systematic study on the robustness of such watermark-based AI-generated content detection. We focus on AI-generated images. Our work shows that an attacker can post-process a watermarked image via adding a small, human-imperceptible perturbation to it, such that the post-processed image evades detection while maintaining its visual quality. We show the effectiveness of our attack both theoretically and empirically. Moreover, to evade detection, our adversarial post-processing method adds much smaller perturbations to AI-generated images and thus better maintain their visual quality than existing popular post-processing methods such as JPEG compression, Gaussian blur, and Brightness/Contrast. Our work shows the insufficiency of existing watermark-based detection of AI-generated content, highlighting the urgent needs of new methods. Our code is publicly available: //github.com/zhengyuan-jiang/WEvade.

The fundamental diagram serves as the foundation of traffic flow modeling for almost a century. With the increasing availability of road sensor data, deterministic parametric models have proved inadequate in describing the variability of real-world data, especially in congested area of the density-flow diagram. In this paper we estimate the stochastic density-flow relation introducing a nonparametric method called convex quantile regression. The proposed method does not depend on any prior functional form assumptions, but thanks to the concavity constraints, the estimated function satisfies the theoretical properties of the density-flow curve. The second contribution is to develop the new convex quantile regression with bags (CQRb) approach to facilitate practical implementation of CQR to the real-world data. We illustrate the CQRb estimation process using the road sensor data from Finland in years 2016-2018. Our third contribution is to demonstrate the excellent out-of-sample predictive power of the proposed CQRb method in comparison to the standard parametric deterministic approach.

Binarization is a powerful compression technique for neural networks, significantly reducing FLOPs, but often results in a significant drop in model performance. To address this issue, partial binarization techniques have been developed, but a systematic approach to mixing binary and full-precision parameters in a single network is still lacking. In this paper, we propose a controlled approach to partial binarization, creating a budgeted binary neural network (B2NN) with our MixBin strategy. This method optimizes the mixing of binary and full-precision components, allowing for explicit selection of the fraction of the network to remain binary. Our experiments show that B2NNs created using MixBin outperform those from random or iterative searches and state-of-the-art layer selection methods by up to 3% on the ImageNet-1K dataset. We also show that B2NNs outperform the structured pruning baseline by approximately 23% at the extreme FLOP budget of 15%, and perform well in object tracking, with up to a 12.4% relative improvement over other baselines. Additionally, we demonstrate that B2NNs developed by MixBin can be transferred across datasets, with some cases showing improved performance over directly applying MixBin on the downstream data.

Resource reservation is a fundamental mechanism for ensuring quality of service in time-sensitive networks, which can be decentralized by using reservation protocols. In the Ethernet technology Time-Sensitive Networking, this has been proposed in conjunction with the Credit-Based Shaper. For the reservation, the standards assume a maximum worst-case latency bound at each hop. However, we will show through formal analysis and simulation that these worst-case latency bounds are not safe. To face this, we propose an extension to the current standards to allow the reservation of time-sensitive traffic with reliable latency guarantees. The effectiveness of our approach is demonstrated through simulations of both synthetic and industrial networks. Finally, by providing additional information about neighboring devices, we could further increase the maximum reservable traffic by up to 20% in our test cases.

Despite recent attention and exploration of depth for various tasks, it is still an unexplored modality for weakly-supervised object detection (WSOD). We propose an amplifier method for enhancing the performance of WSOD by integrating depth information. Our approach can be applied to any WSOD method based on multiple-instance learning, without necessitating additional annotations or inducing large computational expenses. Our proposed method employs a monocular depth estimation technique to obtain hallucinated depth information, which is then incorporated into a Siamese WSOD network using contrastive loss and fusion. By analyzing the relationship between language context and depth, we calculate depth priors to identify the bounding box proposals that may contain an object of interest. These depth priors are then utilized to update the list of pseudo ground-truth boxes, or adjust the confidence of per-box predictions. Our proposed method is evaluated on six datasets (COCO, PASCAL VOC, Conceptual Captions, Clipart1k, Watercolor2k, and Comic2k) by implementing it on top of two state-of-the-art WSOD methods, and we demonstrate a substantial enhancement in performance.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

北京阿比特科技有限公司