亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Misinformation undermines public trust in science and democracy, particularly on social media where inaccuracies can spread rapidly. Experts and laypeople have shown to be effective in correcting misinformation by manually identifying and explaining inaccuracies. Nevertheless, this approach is difficult to scale, a concern as technologies like large language models (LLMs) make misinformation easier to produce. LLMs also have versatile capabilities that could accelerate misinformation correction; however, they struggle due to a lack of recent information, a tendency to produce plausible but false content and references, and limitations in addressing multimodal information. To address these issues, we propose MUSE, an LLM augmented with access to and credibility evaluation of up-to-date information. By retrieving contextual evidence and refutations, MUSE can provide accurate and trustworthy explanations and references. It also describes visuals and conducts multimodal searches for correcting multimodal misinformation. We recruit fact-checking and journalism experts to evaluate corrections to real social media posts across 13 dimensions, ranging from the factuality of explanation to the relevance of references. The results demonstrate MUSE's ability to correct misinformation promptly after appearing on social media; overall, MUSE outperforms GPT-4 by 37% and even high-quality corrections from laypeople by 29%. This work underscores the potential of LLMs to combat real-world misinformation effectively and efficiently.

相關內容

Kernel based approximation offers versatile tools for high-dimensional approximation, which can especially be leveraged for surrogate modeling. For this purpose, both "knot insertion" and "knot removal" approaches aim at choosing a suitable subset of the data, in order to obtain a sparse but nevertheless accurate kernel model. In the present work, focussing on kernel based interpolation, we aim at combining these two approaches to further improve the accuracy of kernel models, without increasing the computational complexity of the final kernel model. For this, we introduce a class of kernel exchange algorithms (KEA). The resulting KEA algorithm can be used for finetuning greedy kernel surrogate models, allowing for an reduction of the error up to 86.4% (17.2% on average) in our experiments.

This paper develops an in-depth treatment concerning the problem of approximating the Gaussian smoothing and Gaussian derivative computations in scale-space theory for application on discrete data. With close connections to previous axiomatic treatments of continuous and discrete scale-space theory, we consider three main ways discretizing these scale-space operations in terms of explicit discrete convolutions, based on either (i) sampling the Gaussian kernels and the Gaussian derivative kernels, (ii) locally integrating the Gaussian kernels and the Gaussian derivative kernels over each pixel support region and (iii) basing the scale-space analysis on the discrete analogue of the Gaussian kernel, and then computing derivative approximations by applying small-support central difference operators to the spatially smoothed image data. We study the properties of these three main discretization methods both theoretically and experimentally, and characterize their performance by quantitative measures, including the results they give rise to with respect to the task of scale selection, investigated for four different use cases, and with emphasis on the behaviour at fine scales. The results show that the sampled Gaussian kernels and derivatives as well as the integrated Gaussian kernels and derivatives perform very poorly at very fine scales. At very fine scales, the discrete analogue of the Gaussian kernel with its corresponding discrete derivative approximations performs substantially better. The sampled Gaussian kernel and the sampled Gaussian derivatives do, on the other hand, lead to numerically very good approximations of the corresponding continuous results, when the scale parameter is sufficiently large, in the experiments presented in the paper, when the scale parameter is greater than a value of about 1, in units of the grid spacing.

We recently reported evidence that large language models are capable of solving a wide range of text-based analogy problems in a zero-shot manner, indicating the presence of an emergent capacity for analogical reasoning. Two recent commentaries have challenged these results, citing evidence from so-called `counterfactual' tasks in which the standard sequence of the alphabet is arbitrarily permuted so as to decrease similarity with materials that may have been present in the language model's training data. Here, we reply to these critiques, clarifying some misunderstandings about the test materials used in our original work, and presenting evidence that language models are also capable of generalizing to these new counterfactual task variants.

When they occur, azimuthal thermoacoustic oscillations can detrimentally affect the safe operation of gas turbines and aeroengines. We develop a real-time digital twin of azimuthal thermoacoustics of a hydrogen-based annular combustor. The digital twin seamlessly combines two sources of information about the system (i) a physics-based low-order model; and (ii) raw and sparse experimental data from microphones, which contain both aleatoric noise and turbulent fluctuations. First, we derive a low-order thermoacoustic model for azimuthal instabilities, which is deterministic. Second, we propose a real-time data assimilation framework to infer the acoustic pressure, the physical parameters, and the model and measurement biases simultaneously. This is the bias-regularized ensemble Kalman filter (r-EnKF), for which we find an analytical solution that solves the optimization problem. Third, we propose a reservoir computer, which infers both the model bias and measurement bias to close the assimilation equations. Fourth, we propose a real-time digital twin of the azimuthal thermoacoustic dynamics of a laboratory hydrogen-based annular combustor for a variety of equivalence ratios. We find that the real-time digital twin (i) autonomously predicts azimuthal dynamics, in contrast to bias-unregularized methods; (ii) uncovers the physical acoustic pressure from the raw data, i.e., it acts as a physics-based filter; (iii) is a time-varying parameter system, which generalizes existing models that have constant parameters, and capture only slow-varying variables. The digital twin generalizes to all equivalence ratios, which bridges the gap of existing models. This work opens new opportunities for real-time digital twinning of multi-physics problems.

The complex information processing system of humans generates a lot of objective and subjective evaluations, making the exploration of human cognitive products of great cutting-edge theoretical value. In recent years, deep learning technologies, which are inspired by biological brain mechanisms, have made significant strides in the application of psychological or cognitive scientific research, particularly in the memorization and recognition of facial data. This paper investigates through experimental research how neural networks process and store facial expression data and associate these data with a range of psychological attributes produced by humans. Researchers utilized deep learning model VGG16, demonstrating that neural networks can learn and reproduce key features of facial data, thereby storing image memories. Moreover, the experimental results reveal the potential of deep learning models in understanding human emotions and cognitive processes and establish a manifold visualization interpretation of cognitive products or psychological attributes from a non-Euclidean space perspective, offering new insights into enhancing the explainability of AI. This study not only advances the application of AI technology in the field of psychology but also provides a new psychological theoretical understanding the information processing of the AI. The code is available in here: //github.com/NKUShaw/Psychoinformatics.

Languages can encode temporal subordination lexically, via subordinating conjunctions, and morphologically, by marking the relation on the predicate. Systematic cross-linguistic variation among the former can be studied using well-established token-based typological approaches to token-aligned parallel corpora. Variation among different morphological means is instead much harder to tackle and therefore more poorly understood, despite being predominant in several language groups. This paper explores variation in the expression of generic temporal subordination ('when'-clauses) among the languages of Latin America and the Caribbean, where morphological marking is particularly common. It presents probabilistic semantic maps computed on the basis of the languages of the region, thus avoiding bias towards the many world's languages that exclusively use lexified connectors, incorporating associations between character $n$-grams and English $when$. The approach allows capturing morphological clause-linkage devices in addition to lexified connectors, paving the way for larger-scale, strategy-agnostic analyses of typological variation in temporal subordination.

Scopus and the Web of Science have been the foundation for research in the science of science even though these traditional databases systematically underrepresent certain disciplines and world regions. In response, new inclusive databases, notably OpenAlex, have emerged. While many studies have begun using OpenAlex as a data source, few critically assess its limitations. This study, conducted in collaboration with the OpenAlex team, addresses this gap by comparing OpenAlex to Scopus across a number of dimensions. The analysis concludes that OpenAlex is a superset of Scopus and can be a reliable alternative for some analyses, particularly at the country level. Despite this, issues of metadata accuracy and completeness show that additional research is needed to fully comprehend and address OpenAlex's limitations. Doing so will be necessary to confidently use OpenAlex across a wider set of analyses, including those that are not at all possible with more constrained databases.

Logistic regression is widely used in many areas of knowledge. Several works compare the performance of lasso and maximum likelihood estimation in logistic regression. However, part of these works do not perform simulation studies and the remaining ones do not consider scenarios in which the ratio of the number of covariates to sample size is high. In this work, we compare the discrimination performance of lasso and maximum likelihood estimation in logistic regression using simulation studies and applications. Variable selection is done both by lasso and by stepwise when maximum likelihood estimation is used. We consider a wide range of values for the ratio of the number of covariates to sample size. The main conclusion of the work is that lasso has a better discrimination performance than maximum likelihood estimation when the ratio of the number of covariates to sample size is high.

Social media platforms can quickly disseminate STEM content to diverse audiences, but their operation can be mysterious. We used open-source machine learning methods such as clustering, regression, and sentiment analysis to analyze over 1000 videos and metrics thereof from 6 social media STEM creators. Our data provide insights into how audiences generate interest signals(likes, bookmarks, comments, shares), on the correlation of various signals with views, and suggest that content from newer creators is disseminated differently. We also share insights on how to optimize dissemination by analyzing data available exclusively to content creators as well as via sentiment analysis of comments.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

北京阿比特科技有限公司