亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we establish a connection between the parameterization of flow-based and energy-based generative models, and present a new flow-based modeling approach called energy-based normalizing flow (EBFlow). We demonstrate that by optimizing EBFlow with score-matching objectives, the computation of Jacobian determinants for linear transformations can be entirely bypassed. This feature enables the use of arbitrary linear layers in the construction of flow-based models without increasing the computational time complexity of each training iteration from $O(D^2L)$ to $O(D^3L)$ for an $L$-layered model that accepts $D$-dimensional inputs. This makes the training of EBFlow more efficient than the commonly-adopted maximum likelihood training method. In addition to the reduction in runtime, we enhance the training stability and empirical performance of EBFlow through a number of techniques developed based on our analysis of the score-matching methods. The experimental results demonstrate that our approach achieves a significant speedup compared to maximum likelihood estimation while outperforming prior methods with a noticeable margin in terms of negative log-likelihood (NLL).

相關內容

This article considers Bayesian model selection via mean-field (MF) variational approximation. Towards this goal, we study the non-asymptotic properties of MF inference under the Bayesian framework that allows latent variables and model mis-specification. Concretely, we show a Bernstein von-Mises (BvM) theorem for the variational distribution from MF under possible model mis-specification, which implies the distributional convergence of MF variational approximation to a normal distribution centering at the maximal likelihood estimator (within the specified model). Motivated by the BvM theorem, we propose a model selection criterion using the evidence lower bound (ELBO), and demonstrate that the model selected by ELBO tends to asymptotically agree with the one selected by the commonly used Bayesian information criterion (BIC) as sample size tends to infinity. Comparing to BIC, ELBO tends to incur smaller approximation error to the log-marginal likelihood (a.k.a. model evidence) due to a better dimension dependence and full incorporation of the prior information. Moreover, we show the geometric convergence of the coordinate ascent variational inference (CAVI) algorithm under the parametric model framework, which provides a practical guidance on how many iterations one typically needs to run when approximating the ELBO. These findings demonstrate that variational inference is capable of providing a computationally efficient alternative to conventional approaches in tasks beyond obtaining point estimates, which is also empirically demonstrated by our extensive numerical experiments.

In this paper, we consider a wireless federated inference scenario in which devices and a server share a pre-trained machine learning model. The devices communicate statistical information about their local data to the server over a common wireless channel, aiming to enhance the quality of the inference decision at the server. Recent work has introduced federated conformal prediction (CP), which leverages devices-to-server communication to improve the reliability of the server's decision. With federated CP, devices communicate to the server information about the loss accrued by the shared pre-trained model on the local data, and the server leverages this information to calibrate a decision interval, or set, so that it is guaranteed to contain the correct answer with a pre-defined target reliability level. Previous work assumed noise-free communication, whereby devices can communicate a single real number to the server. In this paper, we study for the first time federated CP in a wireless setting. We introduce a novel protocol, termed wireless federated conformal prediction (WFCP), which builds on type-based multiple access (TBMA) and on a novel quantile correction strategy. WFCP is proved to provide formal reliability guarantees in terms of coverage of the predicted set produced by the server. Using numerical results, we demonstrate the significant advantages of WFCP against digital implementations of existing federated CP schemes, especially in regimes with limited communication resources and/or large number of devices.

In this paper, we study the problem of efficiently and effectively embedding the high-dimensional spatio-spectral information of hyperspectral (HS) images, guided by feature diversity. Specifically, based on the theoretical formulation that feature diversity is correlated with the rank of the unfolded kernel matrix, we rectify 3D convolution by modifying its topology to enhance the rank upper-bound. This modification yields a rank-enhanced spatial-spectral symmetrical convolution set (ReS$^3$-ConvSet), which not only learns diverse and powerful feature representations but also saves network parameters. Additionally, we also propose a novel diversity-aware regularization (DA-Reg) term that directly acts on the feature maps to maximize independence among elements. To demonstrate the superiority of the proposed ReS$^3$-ConvSet and DA-Reg, we apply them to various HS image processing and analysis tasks, including denoising, spatial super-resolution, and classification. Extensive experiments show that the proposed approaches outperform state-of-the-art methods both quantitatively and qualitatively to a significant extent. The code is publicly available at //github.com/jinnh/ReSSS-ConvSet.

In this paper, we consider a min-max optimization problem under adversarial manipulation, where there are $n$ cost functions, up to $f$ of which may be replaced by arbitrary faulty functions by an adversary. The goal is to minimize the maximum cost over $x$ among the $n$ functions despite the faulty functions. The problem formulation could naturally extend to Byzantine fault-tolerant distributed min-max optimization. We present a simple algorithm for Byzantine min-max optimization, and provide bounds on the output of the algorithm. We also present an approximate algorithm for this problem. We then extend the problem to a distributed setting and present a distributed algorithm. To the best of our knowledge, we are the first to consider this problem.

In this paper, we propose Puppy, the first formally defined framework for converting any symmetric watermarking into a publicly verifiable one. Puppy allows anyone to verify a watermark any number of times with the help of an untrusted third party, without requiring owner presence during detection. We formally define and prove security of Puppy using the ideal/real-world simulation paradigm and construct two practical and secure instances: (1) Puppy-TEE that uses Trusted Execution Environments (TEEs), and (2) Puppy-2PC that relies on two-party computation (2PC) based on garbled circuits. We then convert four current symmetric watermarking schemes into publicly verifiable ones and run extensive experiments using Puppy-TEE and Puppy-2PC. Evaluation results show that, while Puppy-TEE incurs some overhead, its total latency is on the order of milliseconds for three out of four watermarking schemes. Although the overhead of Puppy-2PC is higher (on the order of seconds), it is viable for settings that lack a TEE or where strong trust assumptions about a TEE need to be avoided. We further optimize the solution to increase its scalability and resilience to denial of service attacks via memoization.

In this work, we address the problem of directing the text generation of a language model (LM) towards a desired behavior, aligning the generated text with the preferences of the human operator. We propose using another, instruction-tuned language model as a critic reward model in a zero-shot way thanks to the prompt of a Yes-No question that represents the user preferences, without requiring further labeled data. This zero-shot reward model provides the learning signal to further fine-tune the base LM using Reinforcement Learning from AI Feedback (RLAIF); yet our approach is also compatible in other contexts such as quality-diversity search. Extensive evidence of the capabilities of the proposed ZYN framework is provided through experiments in different domains related to text generation, including detoxification; optimizing sentiment of movie reviews, or any other attribute; steering the opinion about a particular topic the model may have; and personalizing prompt generators for text-to-image tasks. Code available at \url{//github.com/vicgalle/zero-shot-reward-models/}.

In this paper, a novel artificial intelligence-based cyber-attack detection model for smart grids is developed to stop data integrity cyber-attacks (DIAs) on the received load data by supervisory control and data acquisition (SCADA). In the proposed model, first the load data is forecasted using a regression model and after processing stage, the processed data is clustered using the unsupervised learning method. In this work, in order to achieve the best performance, three load forecasting methods (i.e. extra tree regression (ETR), long short-term memory (LSTM) and bidirectional long short-term memory (BiLSTM)) are utilized as regression models and their performance is compared. For clustering and outlying detection, the covariance elliptic envelope (EE) is employed as an unsupervised learning method. To examine the proposed model, the hourly load data of the power company of the city of Johor in Malaysia is employed and Two common DIAs, which are DIAs targeting economic loss and DIAs targeting blackouts, are used to evaluate the accuracy of detection methods in several scenarios. The simulation results show that the proposed EE-BiLSTM method can perform more robust and accurate compared to the other two methods.

In this paper, we propose a deep reinforcement learning framework called GCOMB to learn algorithms that can solve combinatorial problems over large graphs. GCOMB mimics the greedy algorithm in the original problem and incrementally constructs a solution. The proposed framework utilizes Graph Convolutional Network (GCN) to generate node embeddings that predicts the potential nodes in the solution set from the entire node set. These embeddings enable an efficient training process to learn the greedy policy via Q-learning. Through extensive evaluation on several real and synthetic datasets containing up to a million nodes, we establish that GCOMB is up to 41% better than the state of the art, up to seven times faster than the greedy algorithm, robust and scalable to large dynamic networks.

In this paper, we propose a novel multi-task learning architecture, which incorporates recent advances in attention mechanisms. Our approach, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with task-specific soft-attention modules, which are trainable in an end-to-end manner. These attention modules allow for learning of task-specific features from the global pool, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. Experiments on the CityScapes dataset show that our method outperforms several baselines in both single-task and multi-task learning, and is also more robust to the various weighting schemes in the multi-task loss function. We further explore the effectiveness of our method through experiments over a range of task complexities, and show how our method scales well with task complexity compared to baselines.

In this paper, we present a new method for detecting road users in an urban environment which leads to an improvement in multiple object tracking. Our method takes as an input a foreground image and improves the object detection and segmentation. This new image can be used as an input to trackers that use foreground blobs from background subtraction. The first step is to create foreground images for all the frames in an urban video. Then, starting from the original blobs of the foreground image, we merge the blobs that are close to one another and that have similar optical flow. The next step is extracting the edges of the different objects to detect multiple objects that might be very close (and be merged in the same blob) and to adjust the size of the original blobs. At the same time, we use the optical flow to detect occlusion of objects that are moving in opposite directions. Finally, we make a decision on which information we keep in order to construct a new foreground image with blobs that can be used for tracking. The system is validated on four videos of an urban traffic dataset. Our method improves the recall and precision metrics for the object detection task compared to the vanilla background subtraction method and improves the CLEAR MOT metrics in the tracking tasks for most videos.

北京阿比特科技有限公司