Function merging is a pivotal technique for reducing code size by combining identical or similar functions into a single function. While prior research has extensively explored this technique, it has not been assessed in conjunction with function outlining and linker's identical code folding, despite substantial common ground. The traditional approaches necessitate the complete intermediate representation to compare functions. Consequently, none of these approaches offer a scalable solution compatible with separate compilations while achieving global function merging, which is critical for large app development. In this paper, we introduce our global function merger, leveraging global merge information from previous code generation runs to optimistically create merging instances within each module context independently. Notably, our approach remains sound even when intermediate representations change, making it well-suited for distributed build environments. We present a comprehensive code generation framework that can run both the state-of-the-art global function outliner and our global function merger. These components complement each other, resulting in a positive impact on code size reduction. Our evaluation demonstrates that when integrating the global function merger with a state-of-the-art global function outliner that is fully optimized with ThinLTO, a further reduction of up to 3.5% in code size can be attained. This is in addition to the initial average reduction of 17.3% achieved through global function outlining for real-world iOS apps, all with minimal extra build time.
The extraction of modular object-centric representations for downstream tasks is an emerging area of research. Learning grounded representations of objects that are guaranteed to be stable and invariant promises robust performance across different tasks and environments. Slot Attention (SA) learns object-centric representations by assigning objects to \textit{slots}, but presupposes a \textit{single} distribution from which all slots are randomly initialised. This results in an inability to learn \textit{specialized} slots which bind to specific object types and remain invariant to identity-preserving changes in object appearance. To address this, we present \emph{\textsc{Co}nditional \textsc{S}lot \textsc{A}ttention} (\textsc{CoSA}) using a novel concept of \emph{Grounded Slot Dictionary} (GSD) inspired by vector quantization. Our proposed GSD comprises (i) canonical object-level property vectors and (ii) parametric Gaussian distributions, which define a prior over the slots. We demonstrate the benefits of our method in multiple downstream tasks such as scene generation, composition, and task adaptation, whilst remaining competitive with SA in popular object discovery benchmarks.
We introduce layers to modal type theories, which subsequently enables type theories for pattern matching on code in meta-programming and clean and straightforward semantics.
Wasserstein Gradient Flows (WGF) with respect to specific functionals have been widely used in the machine learning literature. Recently, neural networks have been adopted to approximate certain intractable parts of the underlying Wasserstein gradient flow and result in efficient inference procedures. In this paper, we introduce the Neural Sinkhorn Gradient Flow (NSGF) model, which parametrizes the time-varying velocity field of the Wasserstein gradient flow w.r.t. the Sinkhorn divergence to the target distribution starting a given source distribution. We utilize the velocity field matching training scheme in NSGF, which only requires samples from the source and target distribution to compute an empirical velocity field approximation. Our theoretical analyses show that as the sample size increases to infinity, the mean-field limit of the empirical approximation converges to the true underlying velocity field. To further enhance model efficiency on high-dimensional tasks, a two-phase NSGF++ model is devised, which first follows the Sinkhorn flow to approach the image manifold quickly ($\le 5$ NFEs) and then refines the samples along a simple straight flow. Numerical experiments with synthetic and real-world benchmark datasets support our theoretical results and demonstrate the effectiveness of the proposed methods.
We propose an $\ell_1$-penalized estimator for high-dimensional models of Expected Shortfall (ES). The estimator is obtained as the solution to a least-squares problem for an auxiliary dependent variable, which is defined as a transformation of the dependent variable and a pre-estimated tail quantile. Leveraging a sparsity condition, we derive a nonasymptotic bound on the prediction and estimator errors of the ES estimator, accounting for the estimation error in the dependent variable, and provide conditions under which the estimator is consistent. Our estimator is applicable to heavy-tailed time-series data and we find that the amount of parameters in the model may grow with the sample size at a rate that depends on the dependence and heavy-tailedness in the data. In an empirical application, we consider the systemic risk measure CoES and consider a set of regressors that consists of nonlinear transformations of a set of state variables. We find that the nonlinear model outperforms an unpenalized and untransformed benchmark considerably.
Minimizing cross-entropy over the softmax scores of a linear map composed with a high-capacity encoder is arguably the most popular choice for training neural networks on supervised learning tasks. However, recent works show that one can directly optimize the encoder instead, to obtain equally (or even more) discriminative representations via a supervised variant of a contrastive objective. In this work, we address the question whether there are fundamental differences in the sought-for representation geometry in the output space of the encoder at minimal loss. Specifically, we prove, under mild assumptions, that both losses attain their minimum once the representations of each class collapse to the vertices of a regular simplex, inscribed in a hypersphere. We provide empirical evidence that this configuration is attained in practice and that reaching a close-to-optimal state typically indicates good generalization performance. Yet, the two losses show remarkably different optimization behavior. The number of iterations required to perfectly fit to data scales superlinearly with the amount of randomly flipped labels for the supervised contrastive loss. This is in contrast to the approximately linear scaling previously reported for networks trained with cross-entropy.
The information bottleneck (IB) method is a technique for extracting information that is relevant for predicting the target random variable from the source random variable, which is typically implemented by optimizing the IB Lagrangian that balances the compression and prediction terms. However, the IB Lagrangian is hard to optimize, and multiple trials for tuning values of Lagrangian multiplier are required. Moreover, we show that the prediction performance strictly decreases as the compression gets stronger during optimizing the IB Lagrangian. In this paper, we implement the IB method from the perspective of supervised disentangling. Specifically, we introduce Disentangled Information Bottleneck (DisenIB) that is consistent on compressing source maximally without target prediction performance loss (maximum compression). Theoretical and experimental results demonstrate that our method is consistent on maximum compression, and performs well in terms of generalization, robustness to adversarial attack, out-of-distribution detection, and supervised disentangling.
Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
We introduce an approach for deep reinforcement learning (RL) that improves upon the efficiency, generalization capacity, and interpretability of conventional approaches through structured perception and relational reasoning. It uses self-attention to iteratively reason about the relations between entities in a scene and to guide a model-free policy. Our results show that in a novel navigation and planning task called Box-World, our agent finds interpretable solutions that improve upon baselines in terms of sample complexity, ability to generalize to more complex scenes than experienced during training, and overall performance. In the StarCraft II Learning Environment, our agent achieves state-of-the-art performance on six mini-games -- surpassing human grandmaster performance on four. By considering architectural inductive biases, our work opens new directions for overcoming important, but stubborn, challenges in deep RL.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.