亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Variational quantum algorithms (VQAs) combining the advantages of parameterized quantum circuits and classical optimizers, promise practical quantum applications in the Noisy Intermediate-Scale Quantum era. The performance of VQAs heavily depends on the optimization method. Compared with gradient-free and ordinary gradient descent methods, the quantum natural gradient (QNG), which mirrors the geometric structure of the parameter space, can achieve faster convergence and avoid local minima more easily, thereby reducing the cost of circuit executions. We utilized a fully programmable photonic chip to experimentally estimate the QNG in photonics for the first time. We obtained the dissociation curve of the He-H$^+$ cation and achieved chemical accuracy, verifying the outperformance of QNG optimization on a photonic device. Our work opens up a vista of utilizing QNG in photonics to implement practical near-term quantum applications.

相關內容

We study Bayesian methods for large-scale linear inverse problems, focusing on the challenging task of hyperparameter estimation. Typical hierarchical Bayesian formulations that follow a Markov Chain Monte Carlo approach are possible for small problems with very few hyperparameters but are not computationally feasible for problems with a very large number of unknown parameters. In this work, we describe an empirical Bayesian (EB) method to estimate hyperparameters that maximize the marginal posterior, i.e., the probability density of the hyperparameters conditioned on the data, and then we use the estimated values to compute the posterior of the inverse parameters. For problems where the computation of the square root and inverse of prior covariance matrices are not feasible, we describe an approach based on the generalized Golub-Kahan bidiagonalization to approximate the marginal posterior and seek hyperparameters that minimize the approximate marginal posterior. Numerical results from seismic and atmospheric tomography demonstrate the accuracy, robustness, and potential benefits of the proposed approach.

Designing efficient and high-accuracy numerical methods for complex dynamic incompressible magnetohydrodynamics (MHD) equations remains a challenging problem in various analysis and design tasks. This is mainly due to the nonlinear coupling of the magnetic and velocity fields occurring with convection and Lorentz forces, and multiple physical constraints, which will lead to the limitations of numerical computation. In this paper, we develop the MHDnet as a physics-preserving learning approach to solve MHD problems, where three different mathematical formulations are considered and named $B$ formulation, $A_1$ formulation, and $A_2$ formulation. Then the formulations are embedded into the MHDnet that can preserve the underlying physical properties and divergence-free condition. Moreover, MHDnet is designed by the multi-modes feature merging with multiscale neural network architecture, which can accelerate the convergence of the neural networks (NN) by alleviating the interaction of magnetic fluid coupling across different frequency modes. Furthermore, the pressure fields of three formulations, as the hidden state, can be obtained without extra data and computational cost. Several numerical experiments are presented to demonstrate the performance of the proposed MHDnet compared with different NN architectures and numerical formulations.

We study the long time behavior of an underdamped mean-field Langevin (MFL) equation, and provide a general convergence as well as an exponential convergence rate result under different conditions. The results on the MFL equation can be applied to study the convergence of the Hamiltonian gradient descent algorithm for the overparametrized optimization. We then provide a numerical example of the algorithm to train a generative adversarial networks (GAN).

A system of coupled oscillators on an arbitrary graph is locally driven by the tendency to mutual synchronization between nearby oscillators, but can and often exhibit nonlinear behavior on the whole graph. Understanding such nonlinear behavior has been a key challenge in predicting whether all oscillators in such a system will eventually synchronize. In this paper, we demonstrate that, surprisingly, such nonlinear behavior of coupled oscillators can be effectively linearized in certain latent dynamic spaces. The key insight is that there is a small number of `latent dynamics filters', each with a specific association with synchronizing and non-synchronizing dynamics on subgraphs so that any observed dynamics on subgraphs can be approximated by a suitable linear combination of such elementary dynamic patterns. Taking an ensemble of subgraph-level predictions provides an interpretable predictor for whether the system on the whole graph reaches global synchronization. We propose algorithms based on supervised matrix factorization to learn such latent dynamics filters. We demonstrate that our method performs competitively in synchronization prediction tasks against baselines and black-box classification algorithms, despite its simple and interpretable architecture.

We present methodology for constructing pointwise confidence intervals for the cumulative distribution function and the quantiles of mixing distributions on the unit interval from binomial mixture distribution samples. No assumptions are made on the shape of the mixing distribution. The confidence intervals are constructed by inverting exact tests of composite null hypotheses regarding the mixing distribution. Our method may be applied to any deconvolution approach that produces test statistics whose distribution is stochastically monotone for stochastic increase of the mixing distribution. We propose a hierarchical Bayes approach, which uses finite Polya Trees for modelling the mixing distribution, that provides stable and accurate deconvolution estimates without the need for additional tuning parameters. Our main technical result establishes the stochastic monotonicity property of the test statistics produced by the hierarchical Bayes approach. Leveraging the need for the stochastic monotonicity property, we explicitly derive the smallest asymptotic confidence intervals that may be constructed using our methodology. Raising the question whether it is possible to construct smaller confidence intervals for the mixing distribution without making parametric assumptions on its shape.

We consider a general family of nonlocal in space and time diffusion equations with space-time dependent diffusivity and prove convergence of finite difference schemes in the context of viscosity solutions under very mild conditions. The proofs, based on regularity properties and compactness arguments on the numerical solution, allow to inherit a number of interesting results for the limit equation. More precisely, assuming H\"older regularity only on the initial condition, we prove convergence of the scheme, space-time H\"older regularity of the solution depending on the fractional orders of the operators, as well as specific blow up rates of the first time derivative. Finally, using the obtained regularity results, we are able to prove orders of convergence of the scheme in some cases. These results are consistent with previous studies. The schemes' performance is further numerically verified using both constructed exact solutions and realistic examples. Our experiments show that multithreaded implementation yields an efficient method to solve nonlocal equations numerically.

Common regularization algorithms for linear regression, such as LASSO and Ridge regression, rely on a regularization hyperparameter that balances the tradeoff between minimizing the fitting error and the norm of the learned model coefficients. As this hyperparameter is scalar, it can be easily selected via random or grid search optimizing a cross-validation criterion. However, using a scalar hyperparameter limits the algorithm's flexibility and potential for better generalization. In this paper, we address the problem of linear regression with l2-regularization, where a different regularization hyperparameter is associated with each input variable. We optimize these hyperparameters using a gradient-based approach, wherein the gradient of a cross-validation criterion with respect to the regularization hyperparameters is computed analytically through matrix differential calculus. Additionally, we introduce two strategies tailored for sparse model learning problems aiming at reducing the risk of overfitting to the validation data. Numerical examples demonstrate that our multi-hyperparameter regularization approach outperforms LASSO, Ridge, and Elastic Net regression. Moreover, the analytical computation of the gradient proves to be more efficient in terms of computational time compared to automatic differentiation, especially when handling a large number of input variables. Application to the identification of over-parameterized Linear Parameter-Varying models is also presented.

The main reason for query model's prominence in complexity theory and quantum computing is the presence of concrete lower bounding techniques: polynomial and adversary method. There have been considerable efforts to give lower bounds using these methods, and to compare/relate them with other measures based on the decision tree. We explore the value of these lower bounds on quantum query complexity and their relation with other decision tree based complexity measures for the class of symmetric functions, arguably one of the most natural and basic sets of Boolean functions. We show an explicit construction for the dual of the positive adversary method and also of the square root of private coin certificate game complexity for any total symmetric function. This shows that the two values can't be distinguished for any symmetric function. Additionally, we show that the recently introduced measure of spectral sensitivity gives the same value as both positive adversary and approximate degree for every total symmetric Boolean function. Further, we look at the quantum query complexity of Gap Majority, a partial symmetric function. It has gained importance recently in regard to understanding the composition of randomized query complexity. We characterize the quantum query complexity of Gap Majority and show a lower bound on noisy randomized query complexity (Ben-David and Blais, FOCS 2020) in terms of quantum query complexity. Finally, we study how large certificate complexity and block sensitivity can be as compared to sensitivity for symmetric functions (even up to constant factors). We show tight separations, i.e., give upper bounds on possible separations and construct functions achieving the same.

Low-rank approximation of a matrix function, $f(A)$, is an important task in computational mathematics. Most methods require direct access to $f(A)$, which is often considerably more expensive than accessing $A$. Persson and Kressner (SIMAX 2023) avoid this issue for symmetric positive semidefinite matrices by proposing funNystr\"om, which first constructs a Nystr\"om approximation to $A$ using subspace iteration, and then uses the approximation to directly obtain a low-rank approximation for $f(A)$. They prove that the method yields a near-optimal approximation whenever $f$ is a continuous operator monotone function with $f(0) = 0$. We significantly generalize the results of Persson and Kressner beyond subspace iteration. We show that if $\widehat{A}$ is a near-optimal low-rank Nystr\"om approximation to $A$ then $f(\widehat{A})$ is a near-optimal low-rank approximation to $f(A)$, independently of how $\widehat{A}$ is computed. Further, we show sufficient conditions for a basis $Q$ to produce a near-optimal Nystr\"om approximation $\widehat{A} = AQ(Q^T AQ)^{\dagger} Q^T A$. We use these results to establish that many common low-rank approximation methods produce near-optimal Nystr\"om approximations to $A$ and therefore to $f(A)$.

We consider systems of nonlinear magnetostatics and quasistatics that typically arise in the modeling and simulation of electric machines. The nonlinear problems, eventually obtained after time discretization, are usually solved by employing a vector potential formulation. In the relevant two-dimensional setting, a discretization can be obtained by H1-conforming finite elements. We here consider an alternative formulation based on the H-field which leads to a nonlinear saddlepoint problem. After commenting on the unique solvability, we study the numerical approximation by H(curl)-conforming finite elements and present the main convergence results. A particular focus is put on the efficient solution of the linearized systems arising in every step of the nonlinear Newton solver. Via hybridization, the linearized saddlepoint systems can be transformed into linear elliptic problems, which can be solved with similar computational complexity as those arising in the vector or scalar potential formulation. In summary, we can thus claim that the mixed finite element approach based on the $H$-field can be considered a competitive alternative to the standard vector or scalar potential formulations for the solution of problems in nonlinear magneto-quasistatics.

北京阿比特科技有限公司