亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

An increasing number of communication and computational schemes with quantum advantages have recently been proposed, which implies that quantum technology has fertile application prospects. However, demonstrating these schemes experimentally continues to be a central challenge because of the difficulty in preparing high-dimensional states or highly entangled states. In this study, we introduce and analyse a quantum coupon collector protocol by employing coherent states and simple linear optical elements, which was successfully demonstrated using realistic experimental equipment. We showed that our protocol can significantly reduce the number of samples needed to learn a specific set compared with the classical limit of the coupon collector problem. We also discuss the potential values and expansions of the quantum coupon collector by constructing a quantum blind box game. The information transmitted by the proposed game also broke the classical limit. These results strongly prove the advantages of quantum mechanics in machine learning and communication complexity.

相關內容

Let $X$ and $Y$ be two real-valued random variables. Let $(X_{1},Y_{1}),(X_{2},Y_{2}),\ldots$ be independent identically distributed copies of $(X,Y)$. Suppose there are two players A and B. Player A has access to $X_{1},X_{2},\ldots$ and player B has access to $Y_{1},Y_{2},\ldots$. Without communication, what joint probability distributions can players A and B jointly simulate? That is, if $k,m$ are fixed positive integers, what probability distributions on $\{1,\ldots,m\}^{2}$ are equal to the distribution of $(f(X_{1},\ldots,X_{k}),\,g(Y_{1},\ldots,Y_{k}))$ for some $f,g\colon\mathbb{R}^{k}\to\{1,\ldots,m\}$? When $X$ and $Y$ are standard Gaussians with fixed correlation $\rho\in(-1,1)$, we show that the set of probability distributions that can be noninteractively simulated from $k$ Gaussian samples is the same for any $k\geq m^{2}$. Previously, it was not even known if this number of samples $m^{2}$ would be finite or not, except when $m\leq 2$. Consequently, a straightforward brute-force search deciding whether or not a probability distribution on $\{1,\ldots,m\}^{2}$ is within distance $0<\epsilon<|\rho|$ of being noninteractively simulated from $k$ correlated Gaussian samples has run time bounded by $(5/\epsilon)^{m(\log(\epsilon/2) / \log|\rho|)^{m^{2}}}$, improving a bound of Ghazi, Kamath and Raghavendra. A nonlinear central limit theorem (i.e. invariance principle) of Mossel then generalizes this result to decide whether or not a probability distribution on $\{1,\ldots,m\}^{2}$ is within distance $0<\epsilon<|\rho|$ of being noninteractively simulated from $k$ samples of a given finite discrete distribution $(X,Y)$ in run time that does not depend on $k$, with constants that again improve a bound of Ghazi, Kamath and Raghavendra.

We introduce the hemicubic codes, a family of quantum codes obtained by associating qubits with the $p$-faces of the $n$-cube (for $n>p$) and stabilizer constraints with faces of dimension $(p\pm1)$. The quantum code obtained by identifying antipodal faces of the resulting complex encodes one logical qubit into $N = 2^{n-p-1} \tbinom{n}{p}$ physical qubits and displays local testability with a soundness of $\Omega(1/\log(N))$ beating the current state-of-the-art of $1/\log^{2}(N)$ due to Hastings. We exploit this local testability to devise an efficient decoding algorithm that corrects arbitrary errors of size less than the minimum distance, up to polylog factors. We then extend this code family by considering the quotient of the $n$-cube by arbitrary linear classical codes of length $n$. We establish the parameters of these generalized hemicubic codes. Interestingly, if the soundness of the hemicubic code could be shown to be constant, similarly to the ordinary $n$-cube, then the generalized hemicubic codes could yield quantum locally testable codes of length not exceeding an exponential or even polynomial function of the code dimension.

Quantum computing is evolving so quickly that forces us to revisit, rewrite, and update the basis of the theory. Basic Quantum Algorithms revisits the first quantum algorithms. It started in 1995 with Deutsch trying to evaluate a function at two domain points simultaneously. Then, Deutsch and Jozsa created in 1992 a quantum algorithm that determines whether a Boolean function is constant or balanced. In the next year, Bernstein and Vazirani realized that the same algorithm can be used to find a specific Boolean function in the set of linear Boolean functions. In 1994, Simon presented a new quantum algorithm that determines whether a function is one-to-one or two-to-one exponentially faster than any classical algorithm for the same problem. In the same year, Shor created two new quantum algorithms for factoring integers and calculating discrete logarithms, threatening the cryptography methods widely used nowadays. In 1995, Kitaev described an alternative version for Shor's algorithms that proved useful in many other applications. In the following year, Grover created a quantum search algorithm quadratically faster than its classical counterpart. In this work, all those remarkable algorithms are described in detail with a focus on the circuit model.

Understanding quantum channels and the strange behavior of their capacities is a key objective of quantum information theory. Here we study a remarkably simple, low-dimensional, single-parameter family of quantum channels with exotic quantum information-theoretic features. As the simplest example from this family, we focus on a qutrit-to-qutrit channel that is intuitively obtained by hybridizing together a simple degradable channel and a completely useless qubit channel. Such hybridizing makes this channel's capacities behave in a variety of interesting ways. For instance, the private and classical capacity of this channel coincide and can be explicitly calculated, even though the channel does not belong to any class for which the underlying information quantities are known to be additive. Moreover, the quantum capacity of the channel can be computed explicitly, given a clear and compelling conjecture is true. This "spin alignment conjecture", which may be of independent interest, is proved in certain special cases and additional numerical evidence for its validity is provided. Finally, we generalize the qutrit channel in two ways, and the resulting channels and their capacities display similarly rich behavior. In a companion paper, we further show that the qutrit channel demonstrates superadditivity when transmitting quantum information jointly with a variety of assisting channels, in a manner unknown before.

In the training of over-parameterized model functions via gradient descent, sometimes the parameters do not change significantly and remain close to their initial values. This phenomenon is called lazy training, and motivates consideration of the linear approximation of the model function around the initial parameters. In the lazy regime, this linear approximation imitates the behavior of the parameterized function whose associated kernel, called the tangent kernel, specifies the training performance of the model. Lazy training is known to occur in the case of (classical) neural networks with large widths. In this paper, we show that the training of geometrically local parameterized quantum circuits enters the lazy regime for large numbers of qubits. More precisely, we prove bounds on the rate of changes of the parameters of such a geometrically local parameterized quantum circuit in the training process, and on the precision of the linear approximation of the associated quantum model function; both of these bounds tend to zero as the number of qubits grows. We support our analytic results with numerical simulations.

In this paper, we study quantum algorithms for computing the exact value of the treewidth of a graph. Our algorithms are based on the classical algorithm by Fomin and Villanger (Combinatorica 32, 2012) that uses $O(2.616^n)$ time and polynomial space. We show three quantum algorithms with the following complexity, using QRAM in both exponential space algorithms: $\bullet$ $O(1.618^n)$ time and polynomial space; $\bullet$ $O(1.554^n)$ time and $O(1.452^n)$ space; $\bullet$ $O(1.538^n)$ time and space. In contrast, the fastest known classical algorithm for treewidth uses $O(1.755^n)$ time and space. The first two speed-ups are obtained in a fairly straightforward way. The first version uses additionally only Grover's search and provides a quadratic speedup. The second speedup is more time-efficient and uses both Grover's search and the quantum exponential dynamic programming by Ambainis et al. (SODA '19). The third version uses the specific properties of the classical algorithm and treewidth, with a modified version of the quantum dynamic programming on the hypercube. Lastly, as a small side result, we also give a new classical time-space tradeoff for computing treewidth in $O^*(2^n)$ time and $O^*(\sqrt{2^n})$ space.

We initiate the study of parameterized complexity of $\textsf{QMA}$ problems in terms of the number of non-Clifford gates in the problem description. We show that for the problem of parameterized quantum circuit satisfiability, there exists a classical algorithm solving the problem with a runtime scaling exponentially in the number of non-Clifford gates but only polynomially with the system size. This result follows from our main result, that for any Clifford + $t$ $T$-gate quantum circuit satisfiability problem, the search space of optimal witnesses can be reduced to a stabilizer subspace isomorphic to at most $t$ qubits (independent of the system size). Furthermore, we derive new lower bounds on the $T$-count of circuit satisfiability instances and the $T$-count of the $W$-state assuming the classical exponential time hypothesis ($\textsf{ETH}$). Lastly, we explore the parameterized complexity of the quantum non-identity check problem.

Quantum teleportation allows one to transmit an arbitrary qubit from point A to point B using a pair of (pre-shared) entangled qubits and classical bits of information. The conventional protocol for teleportation uses two bits of classical information and assumes that the sender has access to only one copy of the arbitrary qubit to the sent. Here, we ask whether we can do better than two bits of classical information if the sender has access to multiple copies of the qubit to be teleported. We place no restrictions on the qubit states. Consequently, we propose a modified quantum teleportation protocol that allows Alice to reset the state of the entangled pair to its initial state using only local operations. As a result, the proposed teleportation protocol requires the transmission of only one classical bit with a probability greater than one-half. This has implications for efficient quantum communications and security of quantum cryptographic protocols based on quantum entanglement.

Quantum machine learning is expected to be one of the first potential general-purpose applications of near-term quantum devices. A major recent breakthrough in classical machine learning is the notion of generative adversarial training, where the gradients of a discriminator model are used to train a separate generative model. In this work and a companion paper, we extend adversarial training to the quantum domain and show how to construct generative adversarial networks using quantum circuits. Furthermore, we also show how to compute gradients -- a key element in generative adversarial network training -- using another quantum circuit. We give an example of a simple practical circuit ansatz to parametrize quantum machine learning models and perform a simple numerical experiment to demonstrate that quantum generative adversarial networks can be trained successfully.

The Everyday Sexism Project documents everyday examples of sexism reported by volunteer contributors from all around the world. It collected 100,000 entries in 13+ languages within the first 3 years of its existence. The content of reports in various languages submitted to Everyday Sexism is a valuable source of crowdsourced information with great potential for feminist and gender studies. In this paper, we take a computational approach to analyze the content of reports. We use topic-modelling techniques to extract emerging topics and concepts from the reports, and to map the semantic relations between those topics. The resulting picture closely resembles and adds to that arrived at through qualitative analysis, showing that this form of topic modeling could be useful for sifting through datasets that had not previously been subject to any analysis. More precisely, we come up with a map of topics for two different resolutions of our topic model and discuss the connection between the identified topics. In the low resolution picture, for instance, we found Public space/Street, Online, Work related/Office, Transport, School, Media harassment, and Domestic abuse. Among these, the strongest connection is between Public space/Street harassment and Domestic abuse and sexism in personal relationships.The strength of the relationships between topics illustrates the fluid and ubiquitous nature of sexism, with no single experience being unrelated to another.

北京阿比特科技有限公司