亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In order to clear the world of the threat posed by landmines and other explosive devices, robotic systems can play an important role. However, the development of such field robots that need to operate in hazardous conditions requires the careful consideration of multiple aspects related to the perception, mobility, and collaboration capabilities of the system. In the framework of a European challenge, the Artificial Intelligence for Detection of Explosive Devices - eXtended (AIDEDeX) project proposes to design a heterogeneous multi-robot system with advanced sensor fusion algorithms. This system is specifically designed to detect and classify improvised explosive devices, explosive ordnances, and landmines. This project integrates specialised sensors, including electromagnetic induction, ground penetrating radar, X-Ray backscatter imaging, Raman spectrometers, and multimodal cameras, to achieve comprehensive threat identification and localisation. The proposed system comprises a fleet of unmanned ground vehicles and unmanned aerial vehicles. This article details the operational phases of the AIDEDeX system, from rapid terrain exploration using unmanned aerial vehicles to specialised detection and classification by unmanned ground vehicles equipped with a robotic manipulator. Initially focusing on a centralised approach, the project will also explore the potential of a decentralised control architecture, taking inspiration from swarm robotics to provide a robust, adaptable, and scalable solution for explosive detection.

相關內容

The paper presents the kinematic modelling for the coupled motion of a 6-DOF surgical parallel robot PARA-SILSROB which guides a mobile platform carrying the surgical instruments, and the actuators of the sub-modules which hold these tools. To increase the surgical procedure safety, a closed form solution for the kinematic model is derived and then, the forward and inverse kinematic models for the mobile orientation platform are obtained. The kinematic models are used in numerical simulations for the reorientation of the endoscopic camera, which imposes an automated compensatory motion from the active instruments' mod-ules.

Power grids are critical infrastructures of paramount importance to modern society and, therefore, engineered to operate under diverse conditions and failures. The ongoing energy transition poses new challenges for the decision-makers and system operators. Therefore, we must develop grid analysis algorithms to ensure reliable operations. These key tools include power flow analysis and system security analysis, both needed for effective operational and strategic planning. The literature review shows a growing trend of machine learning (ML) models that perform these analyses effectively. In particular, Graph Neural Networks (GNNs) stand out in such applications because of the graph-based structure of power grids. However, there is a lack of publicly available graph datasets for training and benchmarking ML models in electrical power grid applications. First, we present PowerGraph, which comprises GNN-tailored datasets for i) power flows, ii) optimal power flows, and iii) cascading failure analyses of power grids. Second, we provide ground-truth explanations for the cascading failure analysis. Finally, we perform a complete benchmarking of GNN methods for node-level and graph-level tasks and explainability. Overall, PowerGraph is a multifaceted GNN dataset for diverse tasks that includes power flow and fault scenarios with real-world explanations, providing a valuable resource for developing improved GNN models for node-level, graph-level tasks and explainability methods in power system modeling. The dataset is available at //figshare.com/articles/dataset/PowerGraph/22820534 and the code at //github.com/PowerGraph-Datasets.

Loss reserving generally focuses on identifying a single model that can generate superior predictive performance. However, different loss reserving models specialise in capturing different aspects of loss data. This is recognised in practice in the sense that results from different models are often considered, and sometimes combined. For instance, actuaries may take a weighted average of the prediction outcomes from various loss reserving models, often based on subjective assessments. In this paper, we propose a systematic framework to objectively combine (i.e. ensemble) multiple _stochastic_ loss reserving models such that the strengths offered by different models can be utilised effectively. Our framework contains two main innovations compared to existing literature and practice. Firstly, our criteria model combination considers the full distributional properties of the ensemble and not just the central estimate - which is of particular importance in the reserving context. Secondly, our framework is that it is tailored for the features inherent to reserving data. These include, for instance, accident, development, calendar, and claim maturity effects. Crucially, the relative importance and scarcity of data across accident periods renders the problem distinct from the traditional ensembling techniques in statistical learning. Our framework is illustrated with a complex synthetic dataset. In the results, the optimised ensemble outperforms both (i) traditional model selection strategies, and (ii) an equally weighted ensemble. In particular, the improvement occurs not only with central estimates but also relevant quantiles, such as the 75th percentile of reserves (typically of interest to both insurers and regulators). The framework developed in this paper can be implemented thanks to an R package, `ADLP`, which is available from CRAN.

The posterior covariance matrix W defined by the log-likelihood of each observation plays important roles both in the sensitivity analysis and frequentist evaluation of the Bayesian estimators. This study is focused on the matrix W and its principal space; we term the latter as an essential subspace. Projections to the essential subspace realize dimensional reduction in the sensitivity analysis and frequentist evaluation. A key tool for treating frequentist properties is the recently proposed Bayesian infinitesimal jackknife approximation(Giordano and Broderick (2023)). The matrix W can be interpreted as a reproducing kernel and is denoted as W-kernel. Using W-kernel, the essential subspace is expressed as a principal space given by the kernel principal component analysis. A relation to the Fisher kernel and neural tangent kernel is established, which elucidates the connection to the classical asymptotic theory. We also discuss a type of Bayesian-frequentist duality, naturally appeared from the kernel framework. Two applications are discussed: the selection of a representative set of observations and dimensional reduction in the approximate bootstrap. In the former, incomplete Cholesky decomposition is introduced as an efficient method for computing the essential subspace. In the latter, different implementations of the approximate bootstrap for posterior means are compared.

The main challenge of large-scale numerical simulation of radiation transport is the high memory and computation time requirements of discretization methods for kinetic equations. In this work, we derive and investigate a neural network-based approximation to the entropy closure method to accurately compute the solution of the multi-dimensional moment system with a low memory footprint and competitive computational time. We extend methods developed for the standard entropy-based closure to the context of regularized entropy-based closures. The main idea is to interpret structure-preserving neural network approximations of the regularized entropy closure as a two-stage approximation to the original entropy closure. We conduct a numerical analysis of this approximation and investigate optimal parameter choices. Our numerical experiments demonstrate that the method has a much lower memory footprint than traditional methods with competitive computation times and simulation accuracy.

A central challenge in the verification of quantum computers is benchmarking their performance as a whole and demonstrating their computational capabilities. In this work, we find a universal model of quantum computation, Bell sampling, that can be used for both of those tasks and thus provides an ideal stepping stone towards fault-tolerance. In Bell sampling, we measure two copies of a state prepared by a quantum circuit in the transversal Bell basis. We show that the Bell samples are classically intractable to produce and at the same time constitute what we call a circuit shadow: from the Bell samples we can efficiently extract information about the quantum circuit preparing the state, as well as diagnose circuit errors. In addition to known properties that can be efficiently extracted from Bell samples, we give several new and efficient protocols: an estimator of state fidelity, a test for the depth of the circuit and an algorithm to estimate a lower bound to the number of T gates in the circuit. With some additional measurements, our algorithm learns a full description of states prepared by circuits with low T-count.

This article aims to study efficient/trace optimal designs for crossover trials with multiple responses recorded from each subject in the time periods. A multivariate fixed effects model is proposed with direct and carryover effects corresponding to the multiple responses. The corresponding error dispersion matrix is chosen to be either of the proportional or the generalized Markov covariance type, permitting the existence of direct and cross-correlations within and between the multiple responses. The corresponding information matrices for direct effects under the two types of dispersions are used to determine efficient designs. The efficiency of orthogonal array designs of Type $I$ and strength $2$ is investigated for a wide choice of covariance functions, namely, Mat($0.5$), Mat($1.5$) and Mat($\infty$). To motivate these multivariate crossover designs, a gene expression dataset in a $3 \times 3$ framework is utilized.

Recurrent neural networks (RNNs) notoriously struggle to learn long-term memories, primarily due to vanishing and exploding gradients. The recent success of state-space models (SSMs), a subclass of RNNs, to overcome such difficulties challenges our theoretical understanding. In this paper, we delve into the optimization challenges of RNNs and discover that, as the memory of a network increases, changes in its parameters result in increasingly large output variations, making gradient-based learning highly sensitive, even without exploding gradients. Our analysis further reveals the importance of the element-wise recurrence design pattern combined with careful parametrizations in mitigating this effect. This feature is present in SSMs, as well as in other architectures, such as LSTMs. Overall, our insights provide a new explanation for some of the difficulties in gradient-based learning of RNNs and why some architectures perform better than others.

This work focuses on the design of experiments of multi-fidelity computer experiments. We consider the autoregressive Gaussian process model proposed by Kennedy and O'Hagan (2000) and the optimal nested design that maximizes the prediction accuracy subject to a budget constraint. An approximate solution is identified through the idea of multi-level approximation and recent error bounds of Gaussian process regression. The proposed (approximately) optimal designs admit a simple analytical form. We prove that, to achieve the same prediction accuracy, the proposed optimal multi-fidelity design requires much lower computational cost than any single-fidelity design in the asymptotic sense. Numerical studies confirm this theoretical assertion.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

北京阿比特科技有限公司