亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we present a statistical beamforming algorithm as a pre-processing step for robust automatic speech recognition (ASR). By modeling the target speech as a non-stationary Laplacian distribution, a mask-based statistical beamforming algorithm is proposed to exploit both its output and masked input variance for robust estimation of the beamformer. In addition, we also present a method for steering vector estimation (SVE) based on a noise power ratio obtained from the target and noise outputs in independent component analysis (ICA). To update the beamformer in the same ICA framework, we derive ICA with distortionless and null constraints on target speech, which yields beamformed speech at the target output and noises at the other outputs, respectively. The demixing weights for the target output result in a statistical beamformer with the weighted spatial covariance matrix (wSCM) using a weighting function characterized by a source model. To enhance the SVE, the strict null constraints imposed by the Lagrange multiplier methods are relaxed by generalized penalties with weight parameters, while the strict distortionless constraints are maintained. Furthermore, we derive an online algorithm based on an optimization technique of recursive least squares (RLS) for practical applications. Experimental results on various environments using CHiME-4 and LibriCSS datasets demonstrate the effectiveness of the presented algorithm compared to conventional beamforming and blind source extraction (BSE) based on ICA on both batch and online processing.

相關內容

In this paper, we propose an algorithm that allows joint refinement of camera pose and scene geometry represented by decomposed low-rank tensor, using only 2D images as supervision. First, we conduct a pilot study based on a 1D signal and relate our findings to 3D scenarios, where the naive joint pose optimization on voxel-based NeRFs can easily lead to sub-optimal solutions. Moreover, based on the analysis of the frequency spectrum, we propose to apply convolutional Gaussian filters on 2D and 3D radiance fields for a coarse-to-fine training schedule that enables joint camera pose optimization. Leveraging the decomposition property in decomposed low-rank tensor, our method achieves an equivalent effect to brute-force 3D convolution with only incurring little computational overhead. To further improve the robustness and stability of joint optimization, we also propose techniques of smoothed 2D supervision, randomly scaled kernel parameters, and edge-guided loss mask. Extensive quantitative and qualitative evaluations demonstrate that our proposed framework achieves superior performance in novel view synthesis as well as rapid convergence for optimization.

This paper presents a novel tool, named Rampo, that can perform binary code analysis to identify cyber kinetic vulnerabilities in CPS. The tool takes as input a Signal Temporal Logic (STL) formula that describes the kinetic effect, i.e., the behavior of the physical system, that one wants to avoid. The tool then searches the possible cyber trajectories in the binary code that may lead to such physical behavior. This search integrates binary code analysis tools and hybrid systems falsification tools using a Counter-Example Guided Abstraction Refinement (CEGAR) approach. Rampo starts by analyzing the binary code to extract symbolic constraints that represent the different paths in the code. These symbolic constraints are then passed to a Satisfiability Modulo Theories (SMT) solver to extract the range of control signals that can be produced by each path in the code. The next step is to search over possible physical trajectories using a hybrid systems falsification tool that adheres to the behavior of the cyber paths and yet leads to violations of the STL formula. Since the number of cyber paths that need to be explored increases exponentially with the length of physical trajectories, we iteratively perform refinement of the cyber path constraints based on the previous falsification result and traverse the abstract path tree obtained from the control program to explore the search space of the system. To illustrate the practical utility of binary code analysis in identifying cyber kinetic vulnerabilities, we present case studies from diverse CPS domains, showcasing how they can be discovered in their control programs. Our tool could compute the same number of vulnerabilities while leading to a speedup that ranges from 3x to 98x.

In this study, we have shown autonomous long-term prediction with a spintronic physical reservoir. Due to the short-term memory property of the magnetization dynamics, non-linearity arises in the reservoir states which could be used for long-term prediction tasks using simple linear regression for online training. During the prediction stage, the output is directly fed to the input of the reservoir for autonomous prediction. We employ our proposed reservoir for the modeling of the chaotic time series such as Mackey-Glass and dynamic time-series data, such as household building energy loads. Since only the last layer of a RC needs to be trained with linear regression, it is well suited for learning in real time on edge devices. Here we show that a skyrmion based magnetic tunnel junction can potentially be used as a prototypical RC but any nanomagnetic magnetic tunnel junction with nonlinear magnetization behavior can implement such a RC. By comparing our spintronic physical RC approach with energy load forecasting algorithms, such as LSTMs and RNNs, we conclude that the proposed framework presents good performance in achieving high predictions accuracy, while also requiring low memory and energy both of which are at a premium in hardware resource and power constrained edge applications. Further, the proposed approach is shown to require very small training datasets and at the same time being at least 16X energy efficient compared to the sequence to sequence LSTM for accurate household load predictions.

In this paper, we present a simple yet effective continual learning method for blind image quality assessment (BIQA) with improved quality prediction accuracy, plasticity-stability trade-off, and task-order/-length robustness. The key step in our approach is to freeze all convolution filters of a pre-trained deep neural network (DNN) for an explicit promise of stability, and learn task-specific normalization parameters for plasticity. We assign each new IQA dataset (i.e., task) a prediction head, and load the corresponding normalization parameters to produce a quality score. The final quality estimate is computed by black a weighted summation of predictions from all heads with a lightweight $K$-means gating mechanism. Extensive experiments on six IQA datasets demonstrate the advantages of the proposed method in comparison to previous training techniques for BIQA.

In this paper, we present an innovative process-oriented math process reward model called \textbf{Math-Shepherd}, which assigns a reward score to each step of math problem solutions. The training of Math-Shepherd is achieved using automatically constructed process-wise supervision data, breaking the bottleneck of heavy reliance on manual annotation in existing work. We explore the effectiveness of Math-Shepherd in two scenarios: 1) \textit{Verification}: Math-Shepherd is utilized for reranking multiple outputs generated by Large Language Models (LLMs); 2) \textit{Reinforcement Learning}: Math-Shepherd is employed to reinforce LLMs with step-by-step Proximal Policy Optimization (PPO). With Math-Shepherd, a series of open-source LLMs demonstrates exceptional performance. For instance, the step-by-step PPO with Math-Shepherd significantly improves the accuracy of Mistral-7B (77.9\%$\to$84.1\% on GSM8K and 28.6\%$\to$33.0\% on MATH). The accuracy can be further enhanced to 89.1\% and 43.5\% on GSM8K and MATH with the verification of Math-Shepherd, respectively. We believe that automatic process supervision holds significant potential for the future evolution of LLMs.

In this paper, we introduce an accelerated distributed stochastic gradient method with momentum for solving the distributed optimization problem, where a group of $n$ agents collaboratively minimize the average of the local objective functions over a connected network. The method, termed ``Distributed Stochastic Momentum Tracking (DSMT)'', is a single-loop algorithm that utilizes the momentum tracking technique as well as the Loopless Chebyshev Acceleration (LCA) method. We show that DSMT can asymptotically achieve comparable convergence rates as centralized stochastic gradient descent (SGD) method under a general variance condition regarding the stochastic gradients. Moreover, the number of iterations (transient times) required for DSMT to achieve such rates behaves as $\mathcal{O}(n^{5/3}/(1-\lambda))$ for minimizing general smooth objective functions, and $\mathcal{O}(\sqrt{n/(1-\lambda)})$ under the Polyak-{\L}ojasiewicz (PL) condition. Here, the term $1-\lambda$ denotes the spectral gap of the mixing matrix related to the underlying network topology. Notably, the obtained results do not rely on multiple inter-node communications or stochastic gradient accumulation per iteration, and the transient times are the shortest under the setting to the best of our knowledge.

This paper presents a general framework to integrate prior knowledge in the form of logic constraints among a set of task functions into kernel machines. The logic propositions provide a partial representation of the environment, in which the learner operates, that is exploited by the learning algorithm together with the information available in the supervised examples. In particular, we consider a multi-task learning scheme, where multiple unary predicates on the feature space are to be learned by kernel machines and a higher level abstract representation consists of logic clauses on these predicates, known to hold for any input. A general approach is presented to convert the logic clauses into a continuous implementation, that processes the outputs computed by the kernel-based predicates. The learning task is formulated as a primal optimization problem of a loss function that combines a term measuring the fitting of the supervised examples, a regularization term, and a penalty term that enforces the constraints on both supervised and unsupervised examples. The proposed semi-supervised learning framework is particularly suited for learning in high dimensionality feature spaces, where the supervised training examples tend to be sparse and generalization difficult. Unlike for standard kernel machines, the cost function to optimize is not generally guaranteed to be convex. However, the experimental results show that it is still possible to find good solutions using a two stage learning schema, in which first the supervised examples are learned until convergence and then the logic constraints are forced. Some promising experimental results on artificial multi-task learning tasks are reported, showing how the classification accuracy can be effectively improved by exploiting the a priori rules and the unsupervised examples.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司