亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Machine learning and deep learning play vital roles in predicting diseases in the medical field. Machine learning algorithms are widely classified as supervised, unsupervised, and reinforcement learning. This paper contains a detailed description of our experimental research work in that we used a supervised machine-learning algorithm to build our model for outbreaks of the novel Coronavirus that has spread over the whole world and caused many deaths, which is one of the most disastrous Pandemics in the history of the world. The people suffered physically and economically to survive in this lockdown. This work aims to understand better how machine learning, ensemble, and deep learning models work and are implemented in the real dataset. In our work, we are going to analyze the current trend or pattern of the coronavirus and then predict the further future of the covid-19 confirmed cases or new cases by training the past Covid-19 dataset by using the machine learning algorithm such as Linear Regression, Polynomial Regression, K-nearest neighbor, Decision Tree, Support Vector Machine and Random forest algorithm are used to train the model. The decision tree and the Random Forest algorithm perform better than SVR in this work. The performance of SVR and lasso regression are low in all prediction areas Because the SVR is challenging to separate the data using the hyperplane for this type of problem. So SVR mostly gives a lower performance in this problem. Ensemble (Voting, Bagging, and Stacking) and deep learning models(ANN) also predict well. After the prediction, we evaluated the model using MAE, MSE, RMSE, and MAPE. This work aims to find the trend/pattern of the covid-19.

相關內容

Self-supervised learning in vision-language processing exploits semantic alignment between imaging and text modalities. Prior work in biomedical VLP has mostly relied on the alignment of single image and report pairs even though clinical notes commonly refer to prior images. This does not only introduce poor alignment between the modalities but also a missed opportunity to exploit rich self-supervision through existing temporal content in the data. In this work, we explicitly account for prior images and reports when available during both training and fine-tuning. Our approach, named BioViL-T, uses a CNN-Transformer hybrid multi-image encoder trained jointly with a text model. It is designed to be versatile to arising challenges such as pose variations and missing input images across time. The resulting model excels on downstream tasks both in single- and multi-image setups, achieving state-of-the-art performance on (I) progression classification, (II) phrase grounding, and (III) report generation, whilst offering consistent improvements on disease classification and sentence-similarity tasks. We release a novel multi-modal temporal benchmark dataset, MS-CXR-T, to quantify the quality of vision-language representations in terms of temporal semantics. Our experimental results show the advantages of incorporating prior images and reports to make most use of the data.

Recent years have witnessed a remarkable success of large deep learning models. However, training these models is challenging due to high computational costs, painfully slow convergence, and overfitting issues. In this paper, we present Deep Incubation, a novel approach that enables the efficient and effective training of large models by dividing them into smaller sub-modules that can be trained separately and assembled seamlessly. A key challenge for implementing this idea is to ensure the compatibility of the independently trained sub-modules. To address this issue, we first introduce a global, shared meta model, which is leveraged to implicitly link all the modules together, and can be designed as an extremely small network with negligible computational overhead. Then we propose a module incubation algorithm, which trains each sub-module to replace the corresponding component of the meta model and accomplish a given learning task. Despite the simplicity, our approach effectively encourages each sub-module to be aware of its role in the target large model, such that the finally-learned sub-modules can collaborate with each other smoothly after being assembled. Empirically, our method outperforms end-to-end (E2E) training in terms of both final accuracy and training efficiency. For example, on top of ViT-Huge, it improves the accuracy by 2.7% on ImageNet or achieves similar performance with 4x less training time. Notably, the gains are significant for downstream tasks as well (e.g., object detection and image segmentation on COCO and ADE20K). Code is available at //github.com/LeapLabTHU/Deep-Incubation.

Computed Tomography (CT) scans provide a detailed image of the lungs, allowing clinicians to observe the extent of damage caused by COVID-19. The CT severity score (CTSS) based scoring method is used to identify the extent of lung involvement observed on a CT scan. This paper presents a domain knowledge-based pipeline for extracting regions of infection in COVID-19 patients using a combination of image-processing algorithms and a pre-trained UNET model. The severity of the infection is then classified into different categories using an ensemble of three machine-learning models: Extreme Gradient Boosting, Extremely Randomized Trees, and Support Vector Machine. The proposed system was evaluated on a validation dataset in the AI-Enabled Medical Image Analysis Workshop and COVID-19 Diagnosis Competition (AI-MIA-COV19D) and achieved a macro F1 score of 64\%. These results demonstrate the potential of combining domain knowledge with machine learning techniques for accurate COVID-19 diagnosis using CT scans. The implementation of the proposed system for severity analysis is available at \textit{//github.com/aanandt/Enhancing-COVID-19-Severity-Analysis-through-Ensemble-Methods.git }

Genito-Pelvic Pain/Penetration-Disorder (GPPPD) is a common disorder but rarely treated in routine care. Previous research documents that GPPPD symptoms can be treated effectively using internet-based psychological interventions. However, non-response remains common for all state-of-the-art treatments and it is unclear which patient groups are expected to benefit most from an internet-based intervention. Multivariable prediction models are increasingly used to identify predictors of heterogeneous treatment effects, and to allocate treatments with the greatest expected benefits. In this study, we developed and internally validated a multivariable decision tree model that predicts effects of an internet-based treatment on a multidimensional composite score of GPPPD symptoms. Data of a randomized controlled trial comparing the internet-based intervention to a waitlist control group (N =200) was used to develop a decision tree model using model-based recursive partitioning. Model performance was assessed by examining the apparent and bootstrap bias-corrected performance. The final pruned decision tree consisted of one splitting variable, joint dyadic coping, based on which two response clusters emerged. No effect was found for patients with low dyadic coping ($n$=33; $d$=0.12; 95% CI: -0.57-0.80), while large effects ($d$=1.00; 95%CI: 0.68-1.32; $n$=167) are predicted for those with high dyadic coping at baseline. The bootstrap-bias-corrected performance of the model was $R^2$=27.74% (RMSE=13.22).

We consider a binary supervised learning classification problem where instead of having data in a finite-dimensional Euclidean space, we observe measures on a compact space $\mathcal{X}$. Formally, we observe data $D_N = (\mu_1, Y_1), \ldots, (\mu_N, Y_N)$ where $\mu_i$ is a measure on $\mathcal{X}$ and $Y_i$ is a label in $\{0, 1\}$. Given a set $\mathcal{F}$ of base-classifiers on $\mathcal{X}$, we build corresponding classifiers in the space of measures. We provide upper and lower bounds on the Rademacher complexity of this new class of classifiers that can be expressed simply in terms of corresponding quantities for the class $\mathcal{F}$. If the measures $\mu_i$ are uniform over a finite set, this classification task boils down to a multi-instance learning problem. However, our approach allows more flexibility and diversity in the input data we can deal with. While such a framework has many possible applications, this work strongly emphasizes on classifying data via topological descriptors called persistence diagrams. These objects are discrete measures on $\mathbb{R}^2$, where the coordinates of each point correspond to the range of scales at which a topological feature exists. We will present several classifiers on measures and show how they can heuristically and theoretically enable a good classification performance in various settings in the case of persistence diagrams.

Autonomous racing is a challenging problem, as the vehicle needs to operate at the friction or handling limits in order to achieve minimum lap times. Autonomous race cars require highly accurate perception, state estimation, planning and precise application of controls. What makes it even more challenging is the accurate identification of vehicle model parameters that dictate the effects of the lateral tire slip, which may change over time, for example, due to wear and tear of the tires. Current works either propose model identification offline or need good parameters to start with (within 15-20\% of actual value), which is not enough to account for major changes in tire model that occur during actual races when driving at the control limits. We propose a unified framework which learns the tire model online from the collected data, as well as adjusts the model based on environmental changes even if the model parameters change by a higher margin. We demonstrate our approach in numeric and high-fidelity simulators for a 1:43 scale race car and a full-size car.

Contrastive loss has been increasingly used in learning representations from multiple modalities. In the limit, the nature of the contrastive loss encourages modalities to exactly match each other in the latent space. Yet it remains an open question how the modality alignment affects the downstream task performance. In this paper, based on an information-theoretic argument, we first prove that exact modality alignment is sub-optimal in general for downstream prediction tasks. Hence we advocate that the key of better performance lies in meaningful latent modality structures instead of perfect modality alignment. To this end, we propose three general approaches to construct latent modality structures. Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization. Extensive experiments are conducted on two popular multi-modal representation learning frameworks: the CLIP-based two-tower model and the ALBEF-based fusion model. We test our model on a variety of tasks including zero/few-shot image classification, image-text retrieval, visual question answering, visual reasoning, and visual entailment. Our method achieves consistent improvements over existing methods, demonstrating the effectiveness and generalizability of our proposed approach on latent modality structure regularization.

Inspired by the human cognitive system, attention is a mechanism that imitates the human cognitive awareness about specific information, amplifying critical details to focus more on the essential aspects of data. Deep learning has employed attention to boost performance for many applications. Interestingly, the same attention design can suit processing different data modalities and can easily be incorporated into large networks. Furthermore, multiple complementary attention mechanisms can be incorporated in one network. Hence, attention techniques have become extremely attractive. However, the literature lacks a comprehensive survey specific to attention techniques to guide researchers in employing attention in their deep models. Note that, besides being demanding in terms of training data and computational resources, transformers only cover a single category in self-attention out of the many categories available. We fill this gap and provide an in-depth survey of 50 attention techniques categorizing them by their most prominent features. We initiate our discussion by introducing the fundamental concepts behind the success of attention mechanism. Next, we furnish some essentials such as the strengths and limitations of each attention category, describe their fundamental building blocks, basic formulations with primary usage, and applications specifically for computer vision. We also discuss the challenges and open questions related to attention mechanism in general. Finally, we recommend possible future research directions for deep attention.

The notion of "in-domain data" in NLP is often over-simplistic and vague, as textual data varies in many nuanced linguistic aspects such as topic, style or level of formality. In addition, domain labels are many times unavailable, making it challenging to build domain-specific systems. We show that massive pre-trained language models implicitly learn sentence representations that cluster by domains without supervision -- suggesting a simple data-driven definition of domains in textual data. We harness this property and propose domain data selection methods based on such models, which require only a small set of in-domain monolingual data. We evaluate our data selection methods for neural machine translation across five diverse domains, where they outperform an established approach as measured by both BLEU and by precision and recall of sentence selection with respect to an oracle.

Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.

北京阿比特科技有限公司