亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a scalable solution with adjustable computation time for the joint problem of scheduling and assigning machines and transporters for missions that must be completed in a fixed order of operations across multiple stages. A battery-operated multi-robot system with a maximum travel range is employed as the transporter between stages and charging them is considered as an operation. Robots are assigned to a single job until its completion. Additionally, The operation completion time is assumed to be dependent on the machine and the type of operation, but independent of the job. This work aims to minimize a weighted multi-objective goal that includes both the required time and energy consumed by the transporters. This problem is a variation of the flexible flow shop with transports, that is proven to be NP-complete. To provide a solution, time is discretized, the solution space is divided temporally, and jobs are clustered into diverse groups. Finally, an integer linear programming solver is applied within a sliding time window to determine assignments and create a schedule that minimizes the objective. The computation time can be reduced depending on the number of jobs selected at each segment, with a trade-off on optimality. The proposed algorithm finds its application in a water sampling project, where water sampling jobs are assigned to robots, sample deliveries at laboratories are scheduled, and the robots are routed to charging stations.

相關內容

Recent neuroimaging studies have highlighted the importance of network-centric brain analysis, particularly with functional magnetic resonance imaging. The emergence of Deep Neural Networks has fostered a substantial interest in predicting clinical outcomes and categorizing individuals based on brain networks. However, the conventional approach involving static brain network analysis offers limited potential in capturing the dynamism of brain function. Although recent studies have attempted to harness dynamic brain networks, their high dimensionality and complexity present substantial challenges. This paper proposes a novel methodology, Dynamic bRAin Transformer (DART), which combines static and dynamic brain networks for more effective and nuanced brain function analysis. Our model uses the static brain network as a baseline, integrating dynamic brain networks to enhance performance against traditional methods. We innovatively employ attention mechanisms, enhancing model explainability and exploiting the dynamic brain network's temporal variations. The proposed approach offers a robust solution to the low signal-to-noise ratio of blood-oxygen-level-dependent signals, a recurring issue in direct DNN modeling. It also provides valuable insights into which brain circuits or dynamic networks contribute more to final predictions. As such, DRAT shows a promising direction in neuroimaging studies, contributing to the comprehensive understanding of brain organization and the role of neural circuits.

Taxonomies represent hierarchical relations between entities, frequently applied in various software modeling and natural language processing (NLP) activities. They are typically subject to a set of structural constraints restricting their content. However, manual taxonomy construction can be time-consuming, incomplete, and costly to maintain. Recent studies of large language models (LLMs) have demonstrated that appropriate user inputs (called prompting) can effectively guide LLMs, such as GPT-3, in diverse NLP tasks without explicit (re-)training. However, existing approaches for automated taxonomy construction typically involve fine-tuning a language model by adjusting model parameters. In this paper, we present a general framework for taxonomy construction that takes into account structural constraints. We subsequently conduct a systematic comparison between the prompting and fine-tuning approaches performed on a hypernym taxonomy and a novel computer science taxonomy dataset. Our result reveals the following: (1) Even without explicit training on the dataset, the prompting approach outperforms fine-tuning-based approaches. Moreover, the performance gap between prompting and fine-tuning widens when the training dataset is small. However, (2) taxonomies generated by the fine-tuning approach can be easily post-processed to satisfy all the constraints, whereas handling violations of the taxonomies produced by the prompting approach can be challenging. These evaluation findings provide guidance on selecting the appropriate method for taxonomy construction and highlight potential enhancements for both approaches.

This paper presents the design and development of an intelligent subsystem that includes a novel low-power radar sensor integrated into an autonomous racing perception pipeline to robustly estimate the position and velocity of dynamic obstacles. The proposed system, based on the Infineon BGT60TR13D radar, is evaluated in a real-world scenario with scaled race cars. The paper explores the benefits and limitations of using such a sensor subsystem and draws conclusions based on field-collected data. The results demonstrate a tracking error up to 0.21 +- 0.29 m in distance estimation and 0.39 +- 0.19 m/s in velocity estimation, despite the power consumption in the range of 10s of milliwatts. The presented system provides complementary information to other sensors such as LiDAR and camera, and can be used in a wide range of applications beyond autonomous racing.

Autoscaling functions provide the foundation for achieving elasticity in the modern cloud computing paradigm. It enables dynamic provisioning or de-provisioning resources for cloud software services and applications without human intervention to adapt to workload fluctuations. However, autoscaling microservice is challenging due to various factors. In particular, complex, time-varying service dependencies are difficult to quantify accurately and can lead to cascading effects when allocating resources. This paper presents DeepScaler, a deep learning-based holistic autoscaling approach for microservices that focus on coping with service dependencies to optimize service-level agreements (SLA) assurance and cost efficiency. DeepScaler employs (i) an expectation-maximization-based learning method to adaptively generate affinity matrices revealing service dependencies and (ii) an attention-based graph convolutional network to extract spatio-temporal features of microservices by aggregating neighbors' information of graph-structural data. Thus DeepScaler can capture more potential service dependencies and accurately estimate the resource requirements of all services under dynamic workloads. It allows DeepScaler to reconfigure the resources of the interacting services simultaneously in one resource provisioning operation, avoiding the cascading effect caused by service dependencies. Experimental results demonstrate that our method implements a more effective autoscaling mechanism for microservice that not only allocates resources accurately but also adapts to dependencies changes, significantly reducing SLA violations by an average of 41% at lower costs.

We propose a novel computing runtime that exposes remote compute devices via the cross-vendor open heterogeneous computing standard OpenCL and can execute compute tasks on the MEC cluster side across multiple servers in a scalable manner. Intermittent UE connection loss is handled gracefully even if the device's IP address changes on the way. Network-induced latency is minimized by transferring data and signaling command completions between remote devices in a peer-to-peer fashion directly to the target server with a streamlined TCP-based protocol that yields a command latency of only 60 microseconds on top of network round-trip latency in synthetic benchmarks. The runtime can utilize RDMA to speed up inter-server data transfers by an additional 60% compared to the TCP-based solution. The benefits of the proposed runtime in MEC applications are demonstrated with a smartphone-based augmented reality rendering case study. Measurements show up to 19x improvements to frame rate and 17x improvements to local energy consumption when using the proposed runtime to offload AR rendering from a smartphone. Scalability to multiple GPU servers in real-world applications is shown in a computational fluid dynamics simulation, which scales with the number of servers at roughly 80% efficiency which is comparable to an MPI port of the same simulation.

Momentum space transformations for incommensurate 2D electronic structure calculations are fundamental for reducing computational cost and for representing the data in a more physically motivating format, as exemplified in the Bistritzer-MacDonald model. However, these transformations can be difficult to implement in more complex systems such as when mechanical relaxation patterns are present. In this work, we aim for two objectives. Firstly, we strive to simplify the understanding and implementation of this transformation by rigorously writing the transformations between the four relevant spaces, which we denote real space, configuration space, momentum space, and reciprocal space. This provides a straight-forward algorithm for writing the complex momentum space model from the original real space model. Secondly, we implement this for twisted bilayer graphene with mechanical relaxation affects included. We also analyze the convergence rates of the approximations, and show the tight-binding coupling range increases for smaller relative twists between layers, demonstrating that the 3-nearest neighbor coupling of the Bistritzer-MacDonald model is insufficient when mechanical relaxation is included for very small angles. We quantify this and verify with numerical simulation.

This paper presents a solution to the challenge of mitigating carbon emissions from hosting large-scale machine learning (ML) inference services. ML inference is critical to modern technology products, but it is also a significant contributor to carbon footprint. We introduce Clover, a carbon-friendly ML inference service runtime system that balances performance, accuracy, and carbon emissions through mixed-quality models and GPU resource partitioning. Our experimental results demonstrate that Clover is effective in substantially reducing carbon emissions while maintaining high accuracy and meeting service level agreement (SLA) targets.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司