The quadratic complexity of the attention mechanism represents one of the biggest hurdles for processing long sequences using Transformers. Current methods, relying on sparse representations or stateful recurrence, sacrifice token-to-token interactions, which ultimately leads to compromises in performance. This paper introduces TaylorShift, a novel reformulation of the Taylor softmax that enables computing full token-to-token interactions in linear time and space. We analytically determine the crossover points where employing TaylorShift becomes more efficient than traditional attention, aligning closely with empirical measurements. Specifically, our findings demonstrate that TaylorShift enhances memory efficiency for sequences as short as 800 tokens and accelerates inference for inputs of approximately 1700 tokens and beyond. For shorter sequences, TaylorShift scales comparably with the vanilla attention. Furthermore, a classification benchmark across five tasks involving long sequences reveals no degradation in accuracy when employing Transformers equipped with TaylorShift. For reproducibility, we provide access to our code under //github.com/tobna/TaylorShift.
As the most fundamental scene understanding tasks, object detection and segmentation have made tremendous progress in deep learning era. Due to the expensive manual labeling cost, the annotated categories in existing datasets are often small-scale and pre-defined, i.e., state-of-the-art fully-supervised detectors and segmentors fail to generalize beyond the closed vocabulary. To resolve this limitation, in the last few years, the community has witnessed an increasing attention toward Open-Vocabulary Detection (OVD) and Segmentation (OVS). By ``open-vocabulary'', we mean that the models can classify objects beyond pre-defined categories. In this survey, we provide a comprehensive review on recent developments of OVD and OVS. A taxonomy is first developed to organize different tasks and methodologies. We find that the permission and usage of weak supervision signals can well discriminate different methodologies, including: visual-semantic space mapping, novel visual feature synthesis, region-aware training, pseudo-labeling, knowledge distillation, and transfer learning. The proposed taxonomy is universal across different tasks, covering object detection, semantic/instance/panoptic segmentation, 3D and video understanding. The main design principles, key challenges, development routes, methodology strengths, and weaknesses are thoroughly analyzed. In addition, we benchmark each task along with the vital components of each method in appendix and updated online at //github.com/seanzhuh/awesome-open-vocabulary-detection-and-segmentation. Finally, several promising directions are provided and discussed to stimulate future research.
Modeling the kinematics and dynamics of robotics systems with suspended loads using dual quaternions has not been explored so far. This paper introduces a new innovative control strategy using dual quaternions for UAVs with cable-suspended loads, focusing on the sling load lifting and tracking problems. By utilizing the mathematical efficiency and compactness of dual quaternions, a unified representation of the UAV and its suspended load's dynamics and kinematics is achieved, facilitating the realization of load lifting and trajectory tracking. The simulation results have tested the proposed strategy's accuracy, efficiency, and robustness. This study makes a substantial contribution to present this novel control strategy that harnesses the benefits of dual quaternions for cargo UAVs. Our work also holds promise for inspiring future innovations in under-actuated systems control using dual quaternions.
Large Language Models (LLMs) are increasingly being used for interactive decision-making tasks requiring planning and adapting to the environment. Recent works employ LLMs-as-agents in broadly two ways: iteratively determining the next action (iterative executors) or generating plans and executing sub-tasks using LLMs (plan-and-execute). However, these methods struggle with task complexity, as the inability to execute any sub-task may lead to task failure. To address these shortcomings, we introduce As-Needed Decomposition and Planning for complex Tasks (ADaPT), an approach that explicitly plans and decomposes complex sub-tasks as-needed, i.e., when the LLM is unable to execute them. ADaPT recursively decomposes sub-tasks to adapt to both task complexity and LLM capability. Our results demonstrate that ADaPT substantially outperforms established strong baselines, achieving success rates up to 28.3% higher in ALFWorld, 27% in WebShop, and 33% in TextCraft -- a novel compositional dataset that we introduce. Through extensive analysis, we illustrate the importance of multilevel decomposition and establish that ADaPT dynamically adjusts to the capabilities of the executor LLM as well as to task complexity.
Deploying and testing cellular networks is a complex task due to the multitude of components involved -- from the core to the Radio Access Network (RAN) and User Equipment (UE) -- all of which requires integration and constant monitoring. Additional challenges are posed by the nature of the wireless channel, whose inherent randomness hinders the repeatability and consistency of the testing process. Consequently, existing solutions for both private and public cellular systems still rely heavily on human intervention for operations such as network reconfiguration, performance monitoring, and end-to-end testing. This reliance significantly slows the pace of innovation in cellular systems. To address these challenges, we introduce 5G-CT, an automation framework based on OpenShift and the GitOps workflow, capable of deploying a softwarized end-to-end 5G and O-RAN-compliant system in a matter of seconds without the need for any human intervention. We have deployed 5G-CT to test the integration and performance of open-source cellular stacks, including OpenAirInterface, and have collected months of automated over-the-air testing results involving software-defined radios. 5G-CT brings cloud-native continuous integration and delivery to the RAN, effectively addressing the complexities associated with managing spectrum, radios, heterogeneous devices, and distributed components. Moreover, it endows cellular networks with much needed automation and continuous testing capabilities, providing a platform to evaluate the robustness and resiliency of Open RAN software.
State-of-the-art LiDAR calibration frameworks mainly use non-probabilistic registration methods such as Iterative Closest Point (ICP) and its variants. These methods suffer from biased results due to their pair-wise registration procedure as well as their sensitivity to initialization and parameterization. This often leads to misalignments in the calibration process. Probabilistic registration methods compensate for these drawbacks by specifically modeling the probabilistic nature of the observations. This paper presents GMMCalib, an automatic target-based extrinsic calibration approach for multi-LiDAR systems. Using an implementation of a Gaussian Mixture Model (GMM)-based registration method that allows joint registration of multiple point clouds, this data-driven approach is compared to ICP algorithms. We perform simulation experiments using the digital twin of the EDGAR research vehicle and validate the results in a real-world environment. We also address the local minima problem of local registration methods for extrinsic sensor calibration and use a distance-based metric to evaluate the calibration results. Our results show that an increase in robustness against sensor miscalibrations can be achieved by using GMM-based registration algorithms. The code is open source and available on GitHub.
We investigate the role of uncertainty in decision-making problems with natural language as input. For such tasks, using Large Language Models as agents has become the norm. However, none of the recent approaches employ any additional phase for estimating the uncertainty the agent has about the world during the decision-making task. We focus on a fundamental decision-making framework with natural language as input, which is the one of contextual bandits, where the context information consists of text. As a representative of the approaches with no uncertainty estimation, we consider an LLM bandit with a greedy policy, which picks the action corresponding to the largest predicted reward. We compare this baseline to LLM bandits that make active use of uncertainty estimation by integrating the uncertainty in a Thompson Sampling policy. We employ different techniques for uncertainty estimation, such as Laplace Approximation, Dropout, and Epinets. We empirically show on real-world data that the greedy policy performs worse than the Thompson Sampling policies. These findings suggest that, while overlooked in the LLM literature, uncertainty plays a fundamental role in bandit tasks with LLMs.
The task of motion prediction is pivotal for autonomous driving systems, providing crucial data to choose a vehicle behavior strategy within its surroundings. Existing motion prediction techniques primarily focus on predicting the future trajectory of each agent in the scene individually, utilizing its past trajectory data. In this paper, we introduce an end-to-end neural network methodology designed to predict the future behaviors of all dynamic objects in the environment. This approach leverages the occupancy map and the scene's motion flow. We are investigatin various alternatives for constructing a deep encoder-decoder model called OFMPNet. This model uses a sequence of bird's-eye-view road images, occupancy grid, and prior motion flow as input data. The encoder of the model can incorporate transformer, attention-based, or convolutional units. The decoder considers the use of both convolutional modules and recurrent blocks. Additionally, we propose a novel time-weighted motion flow loss, whose application has shown a substantial decrease in end-point error. Our approach has achieved state-of-the-art results on the Waymo Occupancy and Flow Prediction benchmark, with a Soft IoU of 52.1% and an AUC of 76.75% on Flow-Grounded Occupancy.
Improving the efficiency of state-of-the-art methods in semantic segmentation requires overcoming the increasing computational cost as well as issues such as fusing semantic information from global and local contexts. Based on the recent success and problems that convolutional neural networks (CNNs) encounter in semantic segmentation, this research proposes an encoder-decoder architecture with a unique efficient residual network, Efficient-ResNet. Attention-boosting gates (AbGs) and attention-boosting modules (AbMs) are deployed by aiming to fuse the equivariant and feature-based semantic information with the equivalent sizes of the output of global context of the efficient residual network in the encoder. Respectively, the decoder network is developed with the additional attention-fusion networks (AfNs) inspired by AbM. AfNs are designed to improve the efficiency in the one-to-one conversion of the semantic information by deploying additional convolution layers in the decoder part. Our network is tested on the challenging CamVid and Cityscapes datasets, and the proposed methods reveal significant improvements on the residual networks. To the best of our knowledge, the developed network, SERNet-Former, achieves state-of-the-art results (84.62 % mean IoU) on CamVid dataset and challenging results (87.35 % mean IoU) on Cityscapes validation dataset.
Solving complicated AI tasks with different domains and modalities is a key step toward artificial general intelligence. While there are abundant AI models available for different domains and modalities, they cannot handle complicated AI tasks. Considering large language models (LLMs) have exhibited exceptional ability in language understanding, generation, interaction, and reasoning, we advocate that LLMs could act as a controller to manage existing AI models to solve complicated AI tasks and language could be a generic interface to empower this. Based on this philosophy, we present HuggingGPT, a framework that leverages LLMs (e.g., ChatGPT) to connect various AI models in machine learning communities (e.g., Hugging Face) to solve AI tasks. Specifically, we use ChatGPT to conduct task planning when receiving a user request, select models according to their function descriptions available in Hugging Face, execute each subtask with the selected AI model, and summarize the response according to the execution results. By leveraging the strong language capability of ChatGPT and abundant AI models in Hugging Face, HuggingGPT is able to cover numerous sophisticated AI tasks in different modalities and domains and achieve impressive results in language, vision, speech, and other challenging tasks, which paves a new way towards artificial general intelligence.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.