亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work deals with a number of questions relative to the discrete and continuous adjoint fields associated with the compressible Euler equations and classical aerodynamic functions. The consistency of the discrete adjoint equations with the corresponding continuous adjoint partial differential equation is one of them. It is has been established or at least discussed only for a handful of numerical schemes and a contribution of this article is to give the adjoint consistency conditions for the 2D Jameson-Schmidt-Turkel scheme in cell-centred finite-volume formulation. The consistency issue is also studied here from a new heuristic point of view by discretizing the continuous adjoint equation for the discrete flow and adjoint fields. Both points of view prove to provide useful information. Besides, it has been often noted that discrete or continuous inviscid lift and drag adjoint exhibit numerical divergence close to the wall and stagnation streamline for a wide range of subsonic and transonic flow conditions. This is analyzed here using the physical source term perturbation method introduced in reference [Giles and Pierce, AIAA Paper 97-1850, 1997]. With this point of view, the fourth physical source term of appears to be the only one responsible for this behavior. It is also demonstrated that the numerical divergence of the adjoint variables corresponds to the response of the flow to the convected increment of stagnation pressure and diminution of entropy created at the source and the resulting change in lift and drag.

相關內容

The mesh divergence problem occurring at subsonic and transonic speeds with the adjoint Euler equations is reviewed. By examining a recently derived analytic adjoint solution, it is shown that the explanation is that the adjoint solution is singular at the wall. The wall singularity is caused by the adjoint singularity at the trailing edge, but not in the way it was previously conjectured.

The Green's function approach of Giles and Pierce is used to build the lift and drag based analytic adjoint solutions for the two-dimensional incompressible Euler equations around irrotational base flows. The drag-based adjoint solution turns out to have a very simple closed form in terms of the flow variables and is smooth throughout the flow domain, while the lift-based solution is singular at rear stagnation points and sharp trailing edges owing to the Kutta condition. This singularity is propagated to the whole dividing streamline (comprising the incoming stagnation streamline and the wall) upstream of the rear singularity (trailing edge or rear stagnation point) by the sensitivity of the Kutta condition to changes in the stagnation pressure.

Markov Chain Monte Carlo (MCMC) is one of the most powerful methods to sample from a given probability distribution, of which the Metropolis Adjusted Langevin Algorithm (MALA) is a variant wherein the gradient of the distribution is used towards faster convergence. However, being set up in the Euclidean framework, MALA might perform poorly in higher dimensional problems or in those involving anisotropic densities as the underlying non-Euclidean aspects of the geometry of the sample space remain unaccounted for. We make use of concepts from differential geometry and stochastic calculus on Riemannian manifolds to geometrically adapt a stochastic differential equation with a non-trivial drift term. This adaptation is also referred to as a stochastic development. We apply this method specifically to the Langevin diffusion equation and arrive at a geometrically adapted Langevin dynamics. This new approach far outperforms MALA, certain manifold variants of MALA, and other approaches such as Hamiltonian Monte Carlo (HMC), its adaptive variant the no-U-turn sampler (NUTS) implemented in Stan, especially as the dimension of the problem increases where often GALA is actually the only successful method. This is evidenced through several numerical examples that include parameter estimation of a broad class of probability distributions and a logistic regression problem.

This study presents PRISM, a probabilistic simplex component analysis approach to identifying the vertices of a data-circumscribing simplex from data. The problem has a rich variety of applications, the most notable being hyperspectral unmixing in remote sensing and non-negative matrix factorization in machine learning. PRISM uses a simple probabilistic model, namely, uniform simplex data distribution and additive Gaussian noise, and it carries out inference by maximum likelihood. The inference model is sound in the sense that the vertices are provably identifiable under some assumptions, and it suggests that PRISM can be effective in combating noise when the number of data points is large. PRISM has strong, but hidden, relationships with simplex volume minimization, a powerful geometric approach for the same problem. We study these fundamental aspects, and we also consider algorithmic schemes based on importance sampling and variational inference. In particular, the variational inference scheme is shown to resemble a matrix factorization problem with a special regularizer, which draws an interesting connection to the matrix factorization approach. Numerical results are provided to demonstrate the potential of PRISM.

We prove upper and lower bounds on the minimal spherical dispersion, improving upon previous estimates obtained by Rote and Tichy [Spherical dispersion with an application to polygonal approximation of curves, Anz. \"Osterreich. Akad. Wiss. Math.-Natur. Kl. 132 (1995), 3--10]. In particular, we see that the inverse $N(\varepsilon,d)$ of the minimal spherical dispersion is, for fixed $\varepsilon>0$, linear in the dimension $d$ of the ambient space. We also derive upper and lower bounds on the expected dispersion for points chosen independently and uniformly at random from the Euclidean unit sphere. In terms of the corresponding inverse $\widetilde{N}(\varepsilon,d)$, our bounds are optimal with respect to the dependence on $\varepsilon$.

We couple the L1 discretization for Caputo derivative in time with spectral Galerkin method in space to devise a scheme that solves quasilinear subdiffusion equations. Both the diffusivity and the source are allowed to be nonlinear functions of the solution. We prove method's stability and convergence with spectral accuracy in space. The temporal order depends on solution's regularity in time. Further, we support our results with numerical simulations that utilize parallelism for spatial discretization. Moreover, as a side result we find asymptotic exact values of error constants along with their remainders for discretizations of Caputo derivative and fractional integrals. These constants are the smallest possible which improves the previously established results from the literature.

We construct a zig-zag process targeting a posterior distribution defined on a hybrid state space consisting of both discrete and continuous variables. The construction does not require any assumptions on the structure among discrete variables. We demonstrate our method on two examples in genetics based on the Kingman coalescent, showing that the zig-zag process can lead to efficiency gains of up to several orders of magnitude over classical Metropolis-Hastings algorithms, and that it is well suited to parallel computation. Our construction resembles existing techniques for Hamiltonian Monte Carlo on a hybrid state space, which suffers from implementationally and analytically complex boundary crossings when applied to the coalescent. We demonstrate that the continuous-time zig-zag process avoids these complications.

We show that a specific skew-symmetric form of hyperbolic problems leads to energy conservation and an energy bound. Next, the compressible Euler equations is transformed to this skew-symmetric form and it is explained how to obtain an energy estimate. Finally we show that the new formulation lead to energy stable and energy conserving discrete approximations if the scheme is formulated on summation-by-parts form.

The asymptotic stable region and long-time decay rate of solutions to linear homogeneous Caputo time fractional ordinary differential equations (F-ODEs) are known to be completely determined by the eigenvalues of the coefficient matrix. Very different from the exponential decay of solutions to classical ODEs, solutions of F-ODEs decay only polynomially, leading to the so-called Mittag-Leffler stability, which was already extended to semi-linear F-ODEs with small perturbations. This work is mainly devoted to the qualitative analysis of the long-time behavior of numerical solutions. By applying the singularity analysis of generating functions developed by Flajolet and Odlyzko (SIAM J. Disc. Math. 3 (1990), 216-240), we are able to prove that both $\mathcal{L}$1 scheme and strong $A$-stable fractional linear multistep methods (F-LMMs) can preserve the numerical Mittag-Leffler stability for linear homogeneous F-ODEs exactly as in the continuous case. Through an improved estimate of the discrete fractional resolvent operator, we show that strong $A$-stable F-LMMs are also Mittag-Leffler stable for semi-linear F-ODEs under small perturbations. For the numerical schemes based on $\alpha$-difference approximation to Caputo derivative, we establish the Mittag-Leffler stability for semi-linear problems by making use of properties of the Poisson transformation and the decay rate of the continuous fractional resolvent operator. Numerical experiments are presented for several typical time fractional evolutional equations, including time fractional sub-diffusion equations, fractional linear system and semi-linear F-ODEs. All the numerical results exhibit the typical long-time polynomial decay rate, which is fully consistent with our theoretical predictions.

Stochastic PDE eigenvalue problems often arise in the field of uncertainty quantification, whereby one seeks to quantify the uncertainty in an eigenvalue, or its eigenfunction. In this paper we present an efficient multilevel quasi-Monte Carlo (MLQMC) algorithm for computing the expectation of the smallest eigenvalue of an elliptic eigenvalue problem with stochastic coefficients. Each sample evaluation requires the solution of a PDE eigenvalue problem, and so tackling this problem in practice is notoriously computationally difficult. We speed up the approximation of this expectation in four ways: we use a multilevel variance reduction scheme to spread the work over a hierarchy of FE meshes and truncation dimensions; we use QMC methods to efficiently compute the expectations on each level; we exploit the smoothness in parameter space and reuse the eigenvector from a nearby QMC point to reduce the number of iterations of the eigensolver; and we utilise a two-grid discretisation scheme to obtain the eigenvalue on the fine mesh with a single linear solve. The full error analysis of a basic MLQMC algorithm is given in the companion paper [Gilbert and Scheichl, 2022], and so in this paper we focus on how to further improve the efficiency and provide theoretical justification for using nearby QMC points and two-grid methods. Numerical results are presented that show the efficiency of our algorithm, and also show that the four strategies we employ are complementary.

北京阿比特科技有限公司