Energy theft, characterized by manipulating energy consumption readings to reduce payments, poses a dual threat-causing financial losses for grid operators and undermining the performance of smart grids. Effective Energy Theft Detection (ETD) methods become crucial in mitigating these risks by identifying such fraudulent activities in their early stages. However, the majority of current ETD methods rely on supervised learning, which is hindered by the difficulty of labelling data and the risk of overfitting known attacks. To address these challenges, several unsupervised ETD methods have been proposed, focusing on learning the normal patterns from honest users, specifically the reconstruction of input. However, our investigation reveals a limitation in current unsupervised ETD methods, as they can only detect anomalous behaviours in users exhibiting regular patterns. Users with high-variance behaviours pose a challenge to these methods. In response, this paper introduces a Denoising Diffusion Probabilistic Model (DDPM)-based ETD approach. This innovative approach demonstrates impressive ETD performance on high-variance smart grid data by incorporating additional attributes correlated with energy consumption. The proposed methods improve the average ETD performance on high-variance smart grid data from below 0.5 to over 0.9 w.r.t. AUC. On the other hand, our experimental findings indicate that while the state-of-the-art ETD methods based on reconstruction error can identify ETD attacks for the majority of users, they prove ineffective in detecting attacks for certain users. To address this, we propose a novel ensemble approach that considers both reconstruction error and forecasting error, enhancing the robustness of the ETD methodology. The proposed ensemble method improves the average ETD performance on the stealthiest attacks from nearly 0 to 0.5 w.r.t. 5%-TPR.
Fusing information from different modalities can enhance data analysis tasks, including clustering. However, existing multi-view clustering (MVC) solutions are limited to specific domains or rely on a suboptimal and computationally demanding two-stage procedure of representation and clustering. We propose an end-to-end deep learning-based MVC framework for general data (image, tabular, etc.). Our approach involves learning meaningful fused data representations with a novel permutation-based canonical correlation objective. Concurrently, we learn cluster assignments by identifying consistent pseudo-labels across multiple views. We demonstrate the effectiveness of our model using ten MVC benchmark datasets. Theoretically, we show that our model approximates the supervised linear discrimination analysis (LDA) representation. Additionally, we provide an error bound induced by false-pseudo label annotations.
Granger causality has been widely used in various application domains to capture lead-lag relationships amongst the components of complex dynamical systems, and the focus in extant literature has been on a single dynamical system. In certain applications in macroeconomics and neuroscience, one has access to data from a collection of related such systems, wherein the modeling task of interest is to extract the shared common structure that is embedded across them, as well as to identify the idiosyncrasies within individual ones. This paper introduces a Variational Autoencoder (VAE) based framework that jointly learns Granger-causal relationships amongst components in a collection of related-yet-heterogeneous dynamical systems, and handles the aforementioned task in a principled way. The performance of the proposed framework is evaluated on several synthetic data settings and benchmarked against existing approaches designed for individual system learning. The method is further illustrated on a real dataset involving time series data from a neurophysiological experiment and produces interpretable results.
Multimodal recommender systems amalgamate multimodal information (e.g., textual descriptions, images) into a collaborative filtering framework to provide more accurate recommendations. While the incorporation of multimodal information could enhance the interpretability of these systems, current multimodal models represent users and items utilizing entangled numerical vectors, rendering them arduous to interpret. To address this, we propose a Disentangled Graph Variational Auto-Encoder (DGVAE) that aims to enhance both model and recommendation interpretability. DGVAE initially projects multimodal information into textual contents, such as converting images to text, by harnessing state-of-the-art multimodal pre-training technologies. It then constructs a frozen item-item graph and encodes the contents and interactions into two sets of disentangled representations utilizing a simplified residual graph convolutional network. DGVAE further regularizes these disentangled representations through mutual information maximization, aligning the representations derived from the interactions between users and items with those learned from textual content. This alignment facilitates the interpretation of user binary interactions via text. Our empirical analysis conducted on three real-world datasets demonstrates that DGVAE significantly surpasses the performance of state-of-the-art baselines by a margin of 10.02%. We also furnish a case study from a real-world dataset to illustrate the interpretability of DGVAE. Code is available at: \url{//github.com/enoche/DGVAE}.
Medical image segmentation aims to delineate the anatomical or pathological structures of interest, playing a crucial role in clinical diagnosis. A substantial amount of high-quality annotated data is crucial for constructing high-precision deep segmentation models. However, medical annotation is highly cumbersome and time-consuming, especially for medical videos or 3D volumes, due to the huge labeling space and poor inter-frame consistency. Recently, a fundamental task named Moving Object Segmentation (MOS) has made significant advancements in natural images. Its objective is to delineate moving objects from the background within image sequences, requiring only minimal annotations. In this paper, we propose the first foundation model, named iMOS, for MOS in medical images. Extensive experiments on a large multi-modal medical dataset validate the effectiveness of the proposed iMOS. Specifically, with the annotation of only a small number of images in the sequence, iMOS can achieve satisfactory tracking and segmentation performance of moving objects throughout the entire sequence in bi-directions. We hope that the proposed iMOS can help accelerate the annotation speed of experts, and boost the development of medical foundation models.
To achieve high-accuracy manipulation in the presence of unknown disturbances, we propose two novel efficient and robust motion control schemes for high-dimensional robot manipulators. Both controllers incorporate an unknown system dynamics estimator (USDE) to estimate disturbances without requiring acceleration signals and the inverse of inertia matrix. Then, based on the USDE framework, an adaptive-gain controller and a super-twisting sliding mode controller are designed to speed up the convergence of tracking errors and strengthen anti-perturbation ability. The former aims to enhance feedback portions through error-driven control gains, while the latter exploits finite-time convergence of discontinuous switching terms. We analyze the boundedness of control signals and the stability of the closed-loop system in theory, and conduct real hardware experiments on a robot manipulator with seven degrees of freedom (DoF). Experimental results verify the effectiveness and improved performance of the proposed controllers, and also show the feasibility of implementation on high-dimensional robots.
Efforts to reduce maternal mortality rate, a key UN Sustainable Development target (SDG Target 3.1), rely largely on preventative care programs to spread critical health information to high-risk populations. These programs face two important challenges: efficiently allocating limited health resources to large beneficiary populations, and adapting to evolving policy priorities. While prior works in restless multi-armed bandit (RMAB) demonstrated success in public health allocation tasks, they lack flexibility to adapt to evolving policy priorities. Concurrently, Large Language Models (LLMs) have emerged as adept, automated planners in various domains, including robotic control and navigation. In this paper, we propose DLM: a Decision Language Model for RMABs. To enable dynamic fine-tuning of RMAB policies for challenging public health settings using human-language commands, we propose using LLMs as automated planners to (1) interpret human policy preference prompts, (2) propose code reward functions for a multi-agent RL environment for RMABs, and (3) iterate on the generated reward using feedback from RMAB simulations to effectively adapt policy outcomes. In collaboration with ARMMAN, an India-based public health organization promoting preventative care for pregnant mothers, we conduct a simulation study, showing DLM can dynamically shape policy outcomes using only human language commands as input.
Sharding is essential for improving blockchain scalability. Existing protocols overlook diverse adversarial attacks, limiting transaction throughput. This paper presents Reticulum, a groundbreaking sharding protocol addressing this issue, boosting blockchain scalability. Reticulum employs a two-phase approach, adapting transaction throughput based on runtime adversarial attacks. It comprises "control" and "process" shards in two layers. Process shards contain at least one trustworthy node, while control shards have a majority of trusted nodes. In the first phase, transactions are written to blocks and voted on by nodes in process shards. Unanimously accepted blocks are confirmed. In the second phase, blocks without unanimous acceptance are voted on by control shards. Blocks are accepted if the majority votes in favor, eliminating first-phase opponents and silent voters. Reticulum uses unanimous voting in the first phase, involving fewer nodes, enabling more parallel process shards. Control shards finalize decisions and resolve disputes. Experiments confirm Reticulum's innovative design, providing high transaction throughput and robustness against various network attacks, outperforming existing sharding protocols for blockchain networks.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.
Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.