亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper deals with the Darcy-Forchheimer problem with two kinds of boundary conditions. We discretize the system by using the finite element methods and we propose two iterative schemes to solve the discrete problems. The well-posedness and the convergence of the corresponding iterative problems are then proven. Finally, several numerical experiments are performed to validate the proposed numerical schemes.

相關內容

The $P_1$--nonconforming quadrilateral finite element space with periodic boundary condition is investigated. The dimension and basis for the space are characterized with the concept of minimally essential discrete boundary conditions. We show that the situation is totally different based on the parity of the number of discretization on coordinates. Based on the analysis on the space, we propose several numerical schemes for elliptic problems with periodic boundary condition. Some of these numerical schemes are related with solving a linear equation consisting of a non-invertible matrix. By courtesy of the Drazin inverse, the existence of corresponding numerical solutions is guaranteed. The theoretical relation between the numerical solutions is derived, and it is confirmed by numerical results. Finally, the extension to the three dimensional is provided.

In this paper, we propose a variationally consistent technique for decreasing the maximum eigenfrequencies of structural dynamics related finite element formulations. Our approach is based on adding a symmetric positive-definite term to the mass matrix that follows from the integral of the traction jump across element boundaries. The added term is weighted by a small factor, for which we derive a suitable, and simple, element-local parameter choice. For linear problems, we show that our mass-scaling method produces no adverse effects in terms of spatial accuracy and orders of convergence. We illustrate these properties in one, two and three spatial dimension, for quadrilateral elements and triangular elements, and for up to fourth order polynomials basis functions. To extend the method to non-linear problems, we introduce a linear approximation and show that a sizeable increase in critical time-step size can be achieved while only causing minor (even beneficial) influences on the dynamic response.

In this article, a numerical scheme to find approximate solutions to the McKendrick-Von Foerster equation with diffusion (M-V-D) is presented. The main difficulty in employing the standard analysis to study the properties of this scheme is due to presence of nonlinear and nonlocal term in the Robin boundary condition in the M-V-D. To overcome this, we use the abstract theory of discretizations based on the notion of stability threshold to analyze the scheme. Stability, and convergence of the proposed numerical scheme are established.

We study the implicit upwind finite volume scheme for numerically approximating the advection-diffusion equation with a vector field in the low regularity DiPerna-Lions setting. That is, we are concerned with advecting velocity fields that are spatially Sobolev regular and data that are merely integrable. We study the implicit upwind finite volume scheme for numerically approximating the advection-diffusion equation with a vector field in the low regularity DiPerna-Lions setting. We prove that on unstructured regular meshes the rate of convergence of approximate solutions generated by the upwind scheme towards the unique solution of the continuous model is at least one. The numerical error is estimated in terms of logarithmic Kantorovich-Rubinstein distances and provides thus a bound on the rate of weak convergence.

The asymptotic stable region and long-time decay rate of solutions to linear homogeneous Caputo time fractional ordinary differential equations (F-ODEs) are known to be completely determined by the eigenvalues of the coefficient matrix. Very different from the exponential decay of solutions to classical ODEs, solutions of F-ODEs decay only polynomially, leading to the so-called Mittag-Leffler stability, which was already extended to semi-linear F-ODEs with small perturbations. This work is mainly devoted to the qualitative analysis of the long-time behavior of numerical solutions. By applying the singularity analysis of generating functions developed by Flajolet and Odlyzko (SIAM J. Disc. Math. 3 (1990), 216-240), we are able to prove that both $\mathcal{L}$1 scheme and strong $A$-stable fractional linear multistep methods (F-LMMs) can preserve the numerical Mittag-Leffler stability for linear homogeneous F-ODEs exactly as in the continuous case. Through an improved estimate of the discrete fractional resolvent operator, we show that strong $A$-stable F-LMMs are also Mittag-Leffler stable for semi-linear F-ODEs under small perturbations. For the numerical schemes based on $\alpha$-difference approximation to Caputo derivative, we establish the Mittag-Leffler stability for semi-linear problems by making use of properties of the Poisson transformation and the decay rate of the continuous fractional resolvent operator. Numerical experiments are presented for several typical time fractional evolutional equations, including time fractional sub-diffusion equations, fractional linear system and semi-linear F-ODEs. All the numerical results exhibit the typical long-time polynomial decay rate, which is fully consistent with our theoretical predictions.

The paper provides a novel framework to study the accuracy and stability of numerical integration schemes when employed for the time domain simulation of power systems. A matrix pencil-based approach is adopted to evaluate the error between the dynamic modes of the power system and the modes of the approximated discrete-time system arising from the application of the numerical method. The proposed approach can provide meaningful insights on how different methods compare to each other when applied to a power system, while being general enough to be systematically utilized for, in principle, any numerical method. The framework is illustrated for a handful of well-known explicit and implicit methods, while simulation results are presented based on the WSCC 9-bus system, as well as on a 1, 479-bus dynamic model of the All-Island Irish Transmission System.

Stochastic gradient descent ascent (SGDA) and its variants have been the workhorse for solving minimax problems. However, in contrast to the well-studied stochastic gradient descent (SGD) with differential privacy (DP) constraints, there is little work on understanding the generalization (utility) of SGDA with DP constraints. In this paper, we use the algorithmic stability approach to establish the generalization (utility) of DP-SGDA in different settings. In particular, for the convex-concave setting, we prove that the DP-SGDA can achieve an optimal utility rate in terms of the weak primal-dual population risk in both smooth and non-smooth cases. To our best knowledge, this is the first-ever-known result for DP-SGDA in the non-smooth case. We further provide its utility analysis in the nonconvex-strongly-concave setting which is the first-ever-known result in terms of the primal population risk. The convergence and generalization results for this nonconvex setting are new even in the non-private setting. Finally, numerical experiments are conducted to demonstrate the effectiveness of DP-SGDA for both convex and nonconvex cases.

We analyze the orthogonal greedy algorithm when applied to dictionaries $\mathbb{D}$ whose convex hull has small entropy. We show that if the metric entropy of the convex hull of $\mathbb{D}$ decays at a rate of $O(n^{-\frac{1}{2}-\alpha})$ for $\alpha > 0$, then the orthogonal greedy algorithm converges at the same rate on the variation space of $\mathbb{D}$. This improves upon the well-known $O(n^{-\frac{1}{2}})$ convergence rate of the orthogonal greedy algorithm in many cases, most notably for dictionaries corresponding to shallow neural networks. These results hold under no additional assumptions on the dictionary beyond the decay rate of the entropy of its convex hull. In addition, they are robust to noise in the target function and can be extended to convergence rates on the interpolation spaces of the variation norm. We show empirically that the predicted rates are obtained for the dictionary corresponding to shallow neural networks with Heaviside activation function in two dimensions. Finally, we show that these improved rates are sharp and prove a negative result showing that the iterates generated by the orthogonal greedy algorithm cannot in general be bounded in the variation norm of $\mathbb{D}$.

In this paper, a numerical scheme for a nonlinear McKendrick-von Foerster equation with diffusion in age (MV-D) with the Dirichlet boundary condition is proposed. The main idea to derive the scheme is to use the discretization based on the method of characteristics to the convection part, and the finite difference method to the rest of the terms. The nonlocal terms are dealt with the quadrature methods. As a result, an implicit scheme is obtained for the boundary value problem under consideration. The consistency and the convergence of the proposed numerical scheme is established. Moreover, numerical simulations are presented to validate the theoretical results.

We study sparse linear regression over a network of agents, modeled as an undirected graph and no server node. The estimation of the $s$-sparse parameter is formulated as a constrained LASSO problem wherein each agent owns a subset of the $N$ total observations. We analyze the convergence rate and statistical guarantees of a distributed projected gradient tracking-based algorithm under high-dimensional scaling, allowing the ambient dimension $d$ to grow with (and possibly exceed) the sample size $N$. Our theory shows that, under standard notions of restricted strong convexity and smoothness of the loss functions, suitable conditions on the network connectivity and algorithm tuning, the distributed algorithm converges globally at a {\it linear} rate to an estimate that is within the centralized {\it statistical precision} of the model, $O(s\log d/N)$. When $s\log d/N=o(1)$, a condition necessary for statistical consistency, an $\varepsilon$-optimal solution is attained after $\mathcal{O}(\kappa \log (1/\varepsilon))$ gradient computations and $O (\kappa/(1-\rho) \log (1/\varepsilon))$ communication rounds, where $\kappa$ is the restricted condition number of the loss function and $\rho$ measures the network connectivity. The computation cost matches that of the centralized projected gradient algorithm despite having data distributed; whereas the communication rounds reduce as the network connectivity improves. Overall, our study reveals interesting connections between statistical efficiency, network connectivity \& topology, and convergence rate in high dimensions.

北京阿比特科技有限公司