亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the increasing presence of robots in our every-day environments, improving their social skills is of utmost importance. Nonetheless, social robotics still faces many challenges. One bottleneck is that robotic behaviors need to be often adapted as social norms depend strongly on the environment. For example, a robot should navigate more carefully around patients in a hospital compared to workers in an office. In this work, we investigate meta-reinforcement learning (meta-RL) as a potential solution. Here, robot behaviors are learned via reinforcement learning where a reward function needs to be chosen so that the robot learns an appropriate behavior for a given environment. We propose to use a variational meta-RL procedure that quickly adapts the robots' behavior to new reward functions. As a result, given a new environment different reward functions can be quickly evaluated and an appropriate one selected. The procedure learns a vectorized representation for reward functions and a meta-policy that can be conditioned on such a representation. Given observations from a new reward function, the procedure identifies its representation and conditions the meta-policy to it. While investigating the procedures' capabilities, we realized that it suffers from posterior collapse where only a subset of the dimensions in the representation encode useful information resulting in a reduced performance. Our second contribution, a radial basis function (RBF) layer, partially mitigates this negative effect. The RBF layer lifts the representation to a higher dimensional space, which is more easily exploitable for the meta-policy. We demonstrate the interest of the RBF layer and the usage of meta-RL for social robotics on four robotic simulation tasks.

相關內容

Although current deep models for face tasks surpass human performance on some benchmarks, we do not understand how they work. Thus, we cannot predict how it will react to novel inputs, resulting in catastrophic failures and unwanted biases in the algorithms. Explainable AI helps bridge the gap, but currently, there are very few visualization algorithms designed for faces. This work undertakes a first-of-its-kind meta-analysis of explainability algorithms in the face domain. We explore the nuances and caveats of adapting general-purpose visualization algorithms to the face domain, illustrated by computing visualizations on popular face models. We review existing face explainability works and reveal valuable insights into the structure and hierarchy of face networks. We also determine the design considerations for practical face visualizations accessible to AI practitioners by conducting a user study on the utility of various explainability algorithms.

We present Multi-Layer Intensity Map, a novel 3D object representation for robot perception and autonomous navigation. Intensity maps consist of multiple stacked layers of 2D grid maps each derived from reflected point cloud intensities corresponding to a certain height interval. The different layers of intensity maps can be used to simultaneously estimate obstacles' height, solidity/density, and opacity. We demonstrate that intensity maps' can help accurately differentiate obstacles that are safe to navigate through (e.g. beaded/string curtains, pliable tall grass), from ones that must be avoided (e.g. transparent surfaces such as glass walls, bushes, trees, etc.) in indoor and outdoor environments. Further, to handle narrow passages, and navigate through non-solid obstacles in dense environments, we propose an approach to adaptively inflate or enlarge the obstacles detected on intensity maps based on their solidity, and the robot's preferred velocity direction. We demonstrate these improved navigation capabilities in real-world narrow, dense environments using a real Turtlebot and Boston Dynamics Spot robots. We observe significant increases in success rates to more than 50%, up to a 9.5% decrease in normalized trajectory length, and up to a 22.6% increase in the F-score compared to current navigation methods using other sensor modalities.

In this work, we consider dynamic influence maximization games over social networks with multiple players (influencers). The goal of each influencer is to maximize their own reward subject to their limited total budget rate constraints. Thus, influencers need to carefully design their investment policies considering individuals' opinion dynamics and other influencers' investment strategies, leading to a dynamic game problem. We first consider the case of a single influencer who wants to maximize its utility subject to a total budget rate constraint. We study both offline and online versions of the problem where the opinion dynamics are either known or not known a priori. In the singe-influencer case, we propose an online no-regret algorithm, meaning that as the number of campaign opportunities grows, the average utilities obtained by the offline and online solutions converge. Then, we consider the game formulation with multiple influencers in offline and online settings. For the offline setting, we show that the dynamic game admits a unique Nash equilibrium policy and provide a method to compute it. For the online setting and with two influencers, we show that if each influencer applies the same no-regret online algorithm proposed for the single-influencer maximization problem, they will converge to the set of $\epsilon$-Nash equilibrium policies where $\epsilon=O(\frac{1}{\sqrt{K}})$ scales in average inversely with the number of campaign times $K$ considering the average utilities of the influencers. Moreover, we extend this result to any finite number of influencers under more strict requirements on the information structure. Finally, we provide numerical analysis to validate our results under various settings.

Deeper Vision Transformers (ViTs) are more challenging to train. We expose a degradation problem in deeper layers of ViT when using masked image modeling (MIM) for pre-training. To ease the training of deeper ViTs, we introduce a self-supervised learning framework called \textbf{M}asked \textbf{I}mage \textbf{R}esidual \textbf{L}earning (\textbf{MIRL}), which significantly alleviates the degradation problem, making scaling ViT along depth a promising direction for performance upgrade. We reformulate the pre-training objective for deeper layers of ViT as learning to recover the residual of the masked image. We provide extensive empirical evidence showing that deeper ViTs can be effectively optimized using MIRL and easily gain accuracy from increased depth. With the same level of computational complexity as ViT-Base and ViT-Large, we instantiate 4.5{$\times$} and 2{$\times$} deeper ViTs, dubbed ViT-S-54 and ViT-B-48. The deeper ViT-S-54, costing 3{$\times$} less than ViT-Large, achieves performance on par with ViT-Large. ViT-B-48 achieves 86.2\% top-1 accuracy on ImageNet. On one hand, deeper ViTs pre-trained with MIRL exhibit excellent generalization capabilities on downstream tasks, such as object detection and semantic segmentation. On the other hand, MIRL demonstrates high pre-training efficiency. With less pre-training time, MIRL yields competitive performance compared to other approaches.

Despite achieving great success, graph neural networks (GNNs) are vulnerable to adversarial attacks. Existing defenses focus on developing adversarial training or model modification. In this paper, we propose and formulate graph adversarial immunization, i.e., vaccinating part of graph structure to improve certifiable robustness of graph against any admissible adversarial attack. We first propose edge-level immunization to vaccinate node pairs. Unfortunately, such edge-level immunization cannot defend against emerging node injection attacks, since it only immunizes existing node pairs. To this end, we further propose node-level immunization. To avoid computationally intensive combinatorial optimization associated with adversarial immunization, we develop AdvImmune-Edge and AdvImmune-Node algorithms to effectively obtain the immune node pairs or nodes. Extensive experiments demonstrate the superiority of AdvImmune methods. In particular, AdvImmune-Node remarkably improves the ratio of robust nodes by 79%, 294%, and 100%, after immunizing only 5% of nodes. Furthermore, AdvImmune methods show excellent defensive performance against various attacks, outperforming state-of-the-art defenses. To the best of our knowledge, this is the first attempt to improve certifiable robustness from graph data perspective without losing performance on clean graphs, providing new insights into graph adversarial learning.

Automated industries lead to high quality production, lower manufacturing cost and better utilization of human resources. Robotic manipulator arms have major role in the automation process. However, for complex manipulation tasks, hard coding efficient and safe trajectories is challenging and time consuming. Machine learning methods have the potential to learn such controllers based on expert demonstrations. Despite promising advances, better approaches must be developed to improve safety, reliability, and efficiency of ML methods in both training and deployment phases. This survey aims to review cutting edge technologies and recent trends on ML methods applied to real-world manipulation tasks. After reviewing the related background on ML, the rest of the paper is devoted to ML applications in different domains such as industry, healthcare, agriculture, space, military, and search and rescue. The paper is closed with important research directions for future works.

Relation prediction for knowledge graphs aims at predicting missing relationships between entities. Despite the importance of inductive relation prediction, most previous works are limited to a transductive setting and cannot process previously unseen entities. The recent proposed subgraph-based relation reasoning models provided alternatives to predict links from the subgraph structure surrounding a candidate triplet inductively. However, we observe that these methods often neglect the directed nature of the extracted subgraph and weaken the role of relation information in the subgraph modeling. As a result, they fail to effectively handle the asymmetric/anti-symmetric triplets and produce insufficient embeddings for the target triplets. To this end, we introduce a \textbf{C}\textbf{o}mmunicative \textbf{M}essage \textbf{P}assing neural network for \textbf{I}nductive re\textbf{L}ation r\textbf{E}asoning, \textbf{CoMPILE}, that reasons over local directed subgraph structures and has a vigorous inductive bias to process entity-independent semantic relations. In contrast to existing models, CoMPILE strengthens the message interactions between edges and entitles through a communicative kernel and enables a sufficient flow of relation information. Moreover, we demonstrate that CoMPILE can naturally handle asymmetric/anti-symmetric relations without the need for explosively increasing the number of model parameters by extracting the directed enclosing subgraphs. Extensive experiments show substantial performance gains in comparison to state-of-the-art methods on commonly used benchmark datasets with variant inductive settings.

Conversational recommender systems (CRS) aim to recommend high-quality items to users through interactive conversations. Although several efforts have been made for CRS, two major issues still remain to be solved. First, the conversation data itself lacks of sufficient contextual information for accurately understanding users' preference. Second, there is a semantic gap between natural language expression and item-level user preference. To address these issues, we incorporate both word-oriented and entity-oriented knowledge graphs (KG) to enhance the data representations in CRSs, and adopt Mutual Information Maximization to align the word-level and entity-level semantic spaces. Based on the aligned semantic representations, we further develop a KG-enhanced recommender component for making accurate recommendations, and a KG-enhanced dialog component that can generate informative keywords or entities in the response text. Extensive experiments have demonstrated the effectiveness of our approach in yielding better performance on both recommendation and conversation tasks.

Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.

We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan

北京阿比特科技有限公司