亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The notion of curvature on graphs has recently gained traction in the networks community, with the Ollivier-Ricci curvature (ORC) in particular being used for several tasks in network analysis, such as community detection. In this work, we choose a different approach and study augmentations of the discretization of the Ricci curvature proposed by Forman (AFRC). We empirically and theoretically investigate its relation to the ORC and the un-augmented Forman-Ricci curvature. In particular, we provide evidence that the AFRC frequently gives sufficient insight into the structure of a network to be used for community detection, and therefore provides a computationally cheaper alternative to previous ORC-based methods. Our novel AFRC-based community detection algorithm is competitive with an ORC-based approach. The codebase for fast and efficient computations of AFRC and the experiments in this article will be made publicly available upon publication.

相關內容

Future wireless networks and sensing systems will benefit from access to large chunks of spectrum above 100 GHz, to achieve terabit-per-second data rates in 6th Generation (6G) cellular systems and improve accuracy and reach of Earth exploration and sensing and radio astronomy applications. These are extremely sensitive to interference from artificial signals, thus the spectrum above 100 GHz features several bands which are protected from active transmissions under current spectrum regulations. To provide more agile access to the spectrum for both services, active and passive users will have to coexist without harming passive sensing operations. In this paper, we provide the first, fundamental analysis of Radio Frequency Interference (RFI) that large-scale terrestrial deployments introduce in different satellite sensing systems now orbiting the Earth. We develop a geometry-based analysis and extend it into a data-driven model which accounts for realistic propagation, building obstruction, ground reflection, for network topology with up to $10^5$ nodes in more than $85$ km$^2$. We show that the presence of harmful RFI depends on several factors, including network load, density and topology, satellite orientation, and building density. The results and methodology provide the foundation for the development of coexistence solutions and spectrum policy towards 6G.

We propose a study of the constitution of meaning in human-computer interaction based on Turing and Wittgenstein's definitions of thought, understanding, and decision. We show by the comparative analysis of the conceptual similarities and differences between the two authors that the common sense between humans and machines is co-constituted in and from action and that it is precisely in this co-constitution that lies the social value of their interaction. This involves problematizing human-machine interaction around the question of what it means to "follow a rule" to define and distinguish the interpretative modes and decision-making behaviors of each. We conclude that the mutualization of signs that takes place through the human-machine dialogue is at the foundation of the constitution of a computerized society.

We conducted ethnographic research with 31 misinformation creators and consumers in Brazil and the US before, during, and after a major election to understand the consumption and production of election and medical misinformation. This study contributes to research on misinformation ecosystems by focusing on poorly understood small players, or "micro-influencers", who create misinformation in peer-to-peer networks. We detail four key tactics that micro-influencers use. First, they typically disseminate misleading "gray area" content rather than falsifiable claims, using subtle aesthetic and rhetorical tactics to evade moderation. Second, they post in small, closed groups where members feel safe and predisposed to trust content. Third, they explicitly target misinformation consumers' emotional and social needs. Finally, they post a high volume of short, repetitive content to plant seeds of doubt and build trust in influencers as unofficial experts. We discuss the implications these micro-influencers have for misinformation interventions and platforms' efforts to moderate misinformation.

With rapid technological growth, security attacks are drastically increasing. In many crucial Internet-of-Things (IoT) applications such as healthcare and defense, the early detection of security attacks plays a significant role in protecting huge resources. An intrusion detection system is used to address this problem. The signature-based approaches fail to detect zero-day attacks. So anomaly-based detection particularly AI tools, are becoming popular. In addition, the imbalanced dataset leads to biased results. In Machine Learning (ML) models, F1 score is an important metric to measure the accuracy of class-level correct predictions. The model may fail to detect the target samples if the F1 is considerably low. It will lead to unrecoverable consequences in sensitive applications such as healthcare and defense. So, any improvement in the F1 score has significant impact on the resource protection. In this paper, we present a framework for ML-based intrusion detection system for an imbalanced dataset. In this study, the most recent dataset, namely CICIoT2023 is considered. The random forest (RF) algorithm is used in the proposed framework. The proposed approach improves 3.72%, 3.75% and 4.69% in precision, recall and F1 score, respectively, with the existing method. Additionally, for unsaturated classes (i.e., classes with F1 score < 0.99), F1 score improved significantly by 7.9%. As a result, the proposed approach is more suitable for IoT security applications for efficient detection of intrusion and is useful in further studies.

The Fourth Industrial Revolution, particularly Artificial Intelligence (AI), has had a profound impact on society, raising concerns about its implications and ethical considerations. The emergence of text generative AI tools like ChatGPT has further intensified concerns regarding ethics, security, privacy, and copyright. This study aims to examine the perceptions of individuals in different information flow categorizations toward AI. The results reveal key themes in participant-supplied definitions of AI and the fourth industrial revolution, emphasizing the replication of human intelligence, machine learning, automation, and the integration of digital technologies. Participants expressed concerns about job replacement, privacy invasion, and inaccurate information provided by AI. However, they also recognized the benefits of AI, such as solving complex problems and increasing convenience. Views on government involvement in shaping the fourth industrial revolution varied, with some advocating for strict regulations and others favoring support and development. The anticipated changes brought by the fourth industrial revolution include automation, potential job impacts, increased social disconnect, and reliance on technology. Understanding these perceptions is crucial for effectively managing the challenges and opportunities associated with AI in the evolving digital landscape.

This paper presents a comprehensive and practical guide for practitioners and end-users working with Large Language Models (LLMs) in their downstream natural language processing (NLP) tasks. We provide discussions and insights into the usage of LLMs from the perspectives of models, data, and downstream tasks. Firstly, we offer an introduction and brief summary of current GPT- and BERT-style LLMs. Then, we discuss the influence of pre-training data, training data, and test data. Most importantly, we provide a detailed discussion about the use and non-use cases of large language models for various natural language processing tasks, such as knowledge-intensive tasks, traditional natural language understanding tasks, natural language generation tasks, emergent abilities, and considerations for specific tasks.We present various use cases and non-use cases to illustrate the practical applications and limitations of LLMs in real-world scenarios. We also try to understand the importance of data and the specific challenges associated with each NLP task. Furthermore, we explore the impact of spurious biases on LLMs and delve into other essential considerations, such as efficiency, cost, and latency, to ensure a comprehensive understanding of deploying LLMs in practice. This comprehensive guide aims to provide researchers and practitioners with valuable insights and best practices for working with LLMs, thereby enabling the successful implementation of these models in a wide range of NLP tasks. A curated list of practical guide resources of LLMs, regularly updated, can be found at \url{//github.com/Mooler0410/LLMsPracticalGuide}.

Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.

Australia is a leading AI nation with strong allies and partnerships. Australia has prioritised robotics, AI, and autonomous systems to develop sovereign capability for the military. Australia commits to Article 36 reviews of all new means and methods of warfare to ensure weapons and weapons systems are operated within acceptable systems of control. Additionally, Australia has undergone significant reviews of the risks of AI to human rights and within intelligence organisations and has committed to producing ethics guidelines and frameworks in Security and Defence. Australia is committed to OECD's values-based principles for the responsible stewardship of trustworthy AI as well as adopting a set of National AI ethics principles. While Australia has not adopted an AI governance framework specifically for Defence; Defence Science has published 'A Method for Ethical AI in Defence' (MEAID) technical report which includes a framework and pragmatic tools for managing ethical and legal risks for military applications of AI.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司