亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a novel character control framework that effectively utilizes motion diffusion probabilistic models to generate high-quality and diverse character animations, responding in real-time to a variety of dynamic user-supplied control signals. At the heart of our method lies a transformer-based Conditional Autoregressive Motion Diffusion Model (CAMDM), which takes as input the character's historical motion and can generate a range of diverse potential future motions conditioned on high-level, coarse user control. To meet the demands for diversity, controllability, and computational efficiency required by a real-time controller, we incorporate several key algorithmic designs. These include separate condition tokenization, classifier-free guidance on past motion, and heuristic future trajectory extension, all designed to address the challenges associated with taming motion diffusion probabilistic models for character control. As a result, our work represents the first model that enables real-time generation of high-quality, diverse character animations based on user interactive control, supporting animating the character in multiple styles with a single unified model. We evaluate our method on a diverse set of locomotion skills, demonstrating the merits of our method over existing character controllers. Project page and source codes: //aiganimation.github.io/CAMDM/

相關內容

Autoregressive moving average (ARMA) models are frequently used to analyze time series data. Despite the popularity of these models, likelihood-based inference for ARMA models has subtleties that have been previously identified but continue to cause difficulties in widely used data analysis strategies. We provide a summary of parameter estimation via maximum likelihood and discuss common pitfalls that may lead to sub-optimal parameter estimates. We propose a random initialization algorithm for parameter estimation that frequently yields higher likelihoods than traditional maximum likelihood estimation procedures. We then investigate the parameter uncertainty of maximum likelihood estimates, and propose the use of profile confidence intervals as a superior alternative to intervals derived from the Fisher's information matrix. Through a series of simulation studies, we demonstrate the efficacy of our proposed algorithm and the improved nominal coverage of profile confidence intervals compared to the normal approximation based on Fisher's Information.

The deployment of ever-larger machine learning models reflects a growing consensus that the more expressive the model class one optimizes over$\unicode{x2013}$and the more data one has access to$\unicode{x2013}$the more one can improve performance. As models get deployed in a variety of real-world scenarios, they inevitably face strategic environments. In this work, we consider the natural question of how the interplay of models and strategic interactions affects the relationship between performance at equilibrium and the expressivity of model classes. We find that strategic interactions can break the conventional view$\unicode{x2013}$meaning that performance does not necessarily monotonically improve as model classes get larger or more expressive (even with infinite data). We show the implications of this result in several contexts including strategic regression, strategic classification, and multi-agent reinforcement learning. In particular, we show that each of these settings admits a Braess' paradox-like phenomenon in which optimizing over less expressive model classes allows one to achieve strictly better equilibrium outcomes. Motivated by these examples, we then propose a new paradigm for model selection in games wherein an agent seeks to choose amongst different model classes to use as their action set in a game.

Recent work has provided indirect evidence that pretraining language models on code improves the ability of models to track state changes of discourse entities expressed in natural language. In this work, we systematically test this claim by comparing pairs of language models on their entity tracking performance. Critically, the pairs consist of base models and models trained on top of these base models with additional code data. We extend this analysis to additionally examine the effect of math training, another highly structured data type, and alignment tuning, an important step for enhancing the usability of models. We find clear evidence that models additionally trained on large amounts of code outperform the base models. On the other hand, we find no consistent benefit of additional math training or alignment tuning across various model families.

We propose a novel approximate factor model tailored for analyzing time-dependent curve data. Our model decomposes such data into two distinct components: a low-dimensional predictable factor component and an unpredictable error term. These components are identified through the autocovariance structure of the underlying functional time series. The model parameters are consistently estimated using the eigencomponents of a cumulative autocovariance operator and an information criterion is proposed to determine the appropriate number of factors. The methodology is applied to yield curve modeling and forecasting. Our results indicate that more than three factors are required to characterize the dynamics of the term structure of bond yields.

Generalized category discovery presents a challenge in a realistic scenario, which requires the model's generalization ability to recognize unlabeled samples from known and unknown categories. This paper revisits the challenge of generalized category discovery through the lens of information maximization (InfoMax) with a probabilistic parametric classifier. Our findings reveal that ensuring independence between known and unknown classes while concurrently assuming a uniform probability distribution across all classes, yields an enlarged margin among known and unknown classes that promotes the model's performance. To achieve the aforementioned independence, we propose a novel InfoMax-based method, Regularized Parametric InfoMax (RPIM), which adopts pseudo labels to supervise unlabeled samples during InfoMax, while proposing a regularization to ensure the quality of the pseudo labels. Additionally, we introduce novel semantic-bias transformation to refine the features from the pre-trained model instead of direct fine-tuning to rescue the computational costs. Extensive experiments on six benchmark datasets validate the effectiveness of our method. RPIM significantly improves the performance regarding unknown classes, surpassing the state-of-the-art method by an average margin of 3.5%.

Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.

Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司