亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quality-Diversity is a branch of stochastic optimization that is often applied to problems from the Reinforcement Learning and control domains in order to construct repertoires of well-performing policies/skills that exhibit diversity with respect to a behavior space. Such archives are usually composed of a finite number of reactive agents which are each associated to a unique behavior descriptor, and instantiating behavior descriptors outside of that coarsely discretized space is not straight-forward. While a few recent works suggest solutions to that issue, the trajectory that is generated is not easily customizable beyond the specification of a target behavior descriptor. We propose to jointly solve those problems in environments where semantic information about static scene elements is available by leveraging a Large Language Model to augment the repertoire with natural language descriptions of trajectories, and training a policy conditioned on those descriptions. Thus, our method allows a user to not only specify an arbitrary target behavior descriptor, but also provide the model with a high-level textual prompt to shape the generated trajectory. We also propose an LLM-based approach to evaluating the performance of such generative agents. Furthermore, we develop a benchmark based on simulated robot navigation in a 2d maze that we use for experimental validation.

相關內容

Model Predictive Control (MPC) provides an optimal control solution based on a cost function while allowing for the implementation of process constraints. As a model-based optimal control technique, the performance of MPC strongly depends on the model used where a trade-off between model computation time and prediction performance exists. One solution is the integration of MPC with a machine learning (ML) based process model which are quick to evaluate online. This work presents the experimental implementation of a deep neural network (DNN) based nonlinear MPC for Homogeneous Charge Compression Ignition (HCCI) combustion control. The DNN model consists of a Long Short-Term Memory (LSTM) network surrounded by fully connected layers which was trained using experimental engine data and showed acceptable prediction performance with under 5% error for all outputs. Using this model, the MPC is designed to track the Indicated Mean Effective Pressure (IMEP) and combustion phasing trajectories, while minimizing several parameters. Using the acados software package to enable the real-time implementation of the MPC on an ARM Cortex A72, the optimization calculations are completed within 1.4 ms. The external A72 processor is integrated with the prototyping engine controller using a UDP connection allowing for rapid experimental deployment of the NMPC. The IMEP trajectory following of the developed controller was excellent, with a root-mean-square error of 0.133 bar, in addition to observing process constraints.

Background: Missing data is a common challenge in mass spectrometry-based metabolomics, which can lead to biased and incomplete analyses. The integration of whole-genome sequencing (WGS) data with metabolomics data has emerged as a promising approach to enhance the accuracy of data imputation in metabolomics studies. Method: In this study, we propose a novel method that leverages the information from WGS data and reference metabolites to impute unknown metabolites. Our approach utilizes a multi-view variational autoencoder to jointly model the burden score, polygenetic risk score (PGS), and linkage disequilibrium (LD) pruned single nucleotide polymorphisms (SNPs) for feature extraction and missing metabolomics data imputation. By learning the latent representations of both omics data, our method can effectively impute missing metabolomics values based on genomic information. Results: We evaluate the performance of our method on empirical metabolomics datasets with missing values and demonstrate its superiority compared to conventional imputation techniques. Using 35 template metabolites derived burden scores, PGS and LD-pruned SNPs, the proposed methods achieved r2-scores > 0.01 for 71.55% of metabolites. Conclusion: The integration of WGS data in metabolomics imputation not only improves data completeness but also enhances downstream analyses, paving the way for more comprehensive and accurate investigations of metabolic pathways and disease associations. Our findings offer valuable insights into the potential benefits of utilizing WGS data for metabolomics data imputation and underscore the importance of leveraging multi-modal data integration in precision medicine research.

Lattice Gas Cellular Automata (LGCA) are a computational model widely known and applied for the simulation of many physical phenomena. Their implementation requires an amount of resources and operations which scale linearly versus the system size and number of time steps. We propose a quantum-pointers-based quantum algorithm able to simulate LGCA while exhibiting an exponential advantage in space complexity and a number of quantum operations independent from the system size. We propose a collision circuit for the FHP lattice-gas automata considering the 2-, 3-, and 4-body collisions. These are implemented with two methodologies that suggest the procedure for finding quantum circuits for LGCA with more collisions. We also propose a phase estimation algorithm to retrieve information about a single cell, whose application can be expanded for implementing other collisions. A general methodology to identify the invariants associated to quantum LGCA is also proposed.

Recently, Graph Transformer (GT) models have been widely used in the task of Molecular Property Prediction (MPP) due to their high reliability in characterizing the latent relationship among graph nodes (i.e., the atoms in a molecule). However, most existing GT-based methods usually explore the basic interactions between pairwise atoms, and thus they fail to consider the important interactions among critical motifs (e.g., functional groups consisted of several atoms) of molecules. As motifs in a molecule are significant patterns that are of great importance for determining molecular properties (e.g., toxicity and solubility), overlooking motif interactions inevitably hinders the effectiveness of MPP. To address this issue, we propose a novel Atom-Motif Contrastive Transformer (AMCT), which not only explores the atom-level interactions but also considers the motif-level interactions. Since the representations of atoms and motifs for a given molecule are actually two different views of the same instance, they are naturally aligned to generate the self-supervisory signals for model training. Meanwhile, the same motif can exist in different molecules, and hence we also employ the contrastive loss to maximize the representation agreement of identical motifs across different molecules. Finally, in order to clearly identify the motifs that are critical in deciding the properties of each molecule, we further construct a property-aware attention mechanism into our learning framework. Our proposed AMCT is extensively evaluated on seven popular benchmark datasets, and both quantitative and qualitative results firmly demonstrate its effectiveness when compared with the state-of-the-art methods.

Digital Twins (DT) are a promising concept in cyber-physical systems research due to their advanced features including monitoring and automated reasoning. Semantic technologies such as Knowledge Graphs (KG) are recently being utilized in DTs especially for information modelling. Building on this move, this paper proposes a pipeline for semantic association rule learning in DTs using KGs and time series data. In addition to this initial pipeline, we also propose new semantic association rule criterion. The approach is evaluated on an industrial water network scenario. Initial evaluation shows that the proposed approach is able to learn a high number of association rules with semantic information which are more generalizable. The paper aims to set a foundation for further work on using semantic association rule learning especially in the context of industrial applications.

Integrated sensing and communication (ISAC) has the advantages of efficient spectrum utilization and low hardware cost. It is promising to be implemented in the fifth-generation-advanced (5G-A) and sixth-generation (6G) mobile communication systems, having the potential to be applied in intelligent applications requiring both communication and high-accurate sensing capabilities. As the fundamental technology of ISAC, ISAC signal directly impacts the performance of sensing and communication. This article systematically reviews the literature on ISAC signals from the perspective of mobile communication systems, including ISAC signal design, ISAC signal processing algorithms and ISAC signal optimization. We first review the ISAC signal design based on 5G, 5G-A and 6G mobile communication systems. Then, radar signal processing methods are reviewed for ISAC signals, mainly including the channel information matrix method, spectrum lines estimator method and super resolution method. In terms of signal optimization, we summarize peak-to-average power ratio (PAPR) optimization, interference management, and adaptive signal optimization for ISAC signals. This article may provide the guidelines for the research of ISAC signals in 5G-A and 6G mobile communication systems.

Computational fluid dynamics (CFD) simulations of viscous fluids described by the Navier-Stokes equations are considered. Depending on the Reynolds number of the flow, the Navier-Stokes equations may exhibit a highly nonlinear behavior. The system of nonlinear equations resulting from the discretization of the Navier-Stokes equations can be solved using nonlinear iteration methods, such as Newton's method. However, fast quadratic convergence is typically only obtained in a local neighborhood of the solution, and for many configurations, the classical Newton iteration does not converge at all. In such cases, so-called globalization techniques may help to improve convergence. In this paper, pseudo-transient continuation is employed in order to improve nonlinear convergence. The classical algorithm is enhanced by a neural network model that is trained to predict a local pseudo-time step. Generalization of the novel approach is facilitated by predicting the local pseudo-time step separately on each element using only local information on a patch of adjacent elements as input. Numerical results for standard benchmark problems, including flow through a backward facing step geometry and Couette flow, show the performance of the machine learning-enhanced globalization approach; as the software for the simulations, the CFD module of COMSOL Multiphysics is employed.

The Central Pattern Generator (CPG) is adept at generating rhythmic gait patterns characterized by consistent timing and adequate foot clearance. Yet, its open-loop configuration often compromises the system's control performance in response to environmental variations. On the other hand, Reinforcement Learning (RL), celebrated for its model-free properties, has gained significant traction in robotics due to its inherent adaptability and robustness. However, initiating traditional RL approaches from the ground up presents computational challenges and a heightened risk of converging to suboptimal local minima. In this paper, we propose an innovative quadruped locomotion framework, SYNLOCO, by synthesizing CPG and RL that can ingeniously integrate the strengths of both methods, enabling the development of a locomotion controller that is both stable and natural. Furthermore, we introduce a set of performance-driven reward metrics that augment the learning of locomotion control. To optimize the learning trajectory of SYNLOCO, a two-phased training strategy is presented. Our empirical evaluation, conducted on a Unitree GO1 robot under varied conditions--including distinct velocities, terrains, and payload capacities--showcases SYNLOCO's ability to produce consistent and clear-footed gaits across diverse scenarios. The developed controller exhibits resilience against substantial parameter variations, underscoring its potential for robust real-world applications.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.

北京阿比特科技有限公司