Movement generation, and especially generalisation to unseen situations, plays an important role in robotics. Different types of movement generation methods exist such as spline based methods, dynamical system based methods, and methods based on Gaussian mixture models (GMMs). Using a large, new dataset on human manipulations, in this paper we provide a highly detailed comparison of five fundamentally different and widely used movement encoding and generation frameworks: dynamic movement primitives (DMPs), time based Gaussian mixture regression (tbGMR), stable estimator of dynamical systems (SEDS), Probabilistic Movement Primitives (ProMP) and Optimal Control Primitives (OCP). We compare these frameworks with respect to their movement encoding efficiency, reconstruction accuracy, and movement generalisation capabilities. The new dataset consists of nine object manipulation actions performed by 12 humans: pick and place, put on top/take down, put inside/take out, hide/uncover, and push/pull with a total of 7,652 movement examples. Our analysis shows that for movement encoding and reconstruction DMPs and OCPs are the most efficient with respect to the number of parameters and reconstruction accuracy, if a sufficient number of kernels is used. In case of movement generalisation to new start- and end-point situations, DMPs, OCPs and task parameterized GMM (TP-GMM, movement generalisation framework based on tbGMR) lead to similar performance, which ProMPs only achieve when using many demonstrations for learning. All models outperform SEDS, which additionally proves to be difficult to fit. Furthermore we observe that TP-GMM and SEDS suffer from problems reaching the end-points of generalizations.These different quantitative results will help selecting the most appropriate models and designing trajectory representations in an improved task-dependent way in future robotic applications.
Underwater robots play a crucial role in exploring aquatic environments. The ability to flexibly adjust their attitudes is essential for underwater robots to effectively accomplish tasks in confined space. However, the highly coupled six degrees of freedom dynamics resulting from attitude changes and the complex turbulence within limited spatial areas present significant challenges. To address the problem of attitude control of underwater robots, this letter investigates large-range pitch angle tracking during station holding as well as simultaneous roll and yaw angle control to enable versatile attitude adjustments. Based on dynamic modeling, this letter proposes an adaptive integral sliding mode controller (AISMC) that integrates an integral module into traditional sliding mode control (SMC) and adaptively adjusts the switching gain for improved tracking accuracy, reduced chattering, and enhanced robustness. The stability of the closed-loop control system is established through Lyapunov analysis. Extensive experiments and comparison studies are conducted using a commercial remotely operated vehicle (ROV), the results of which demonstrate that AISMC achieves satisfactory performance in attitude tracking control in confined space with unknown disturbances, significantly outperforming both PID and SMC.
Collaborative robots must effectively communicate their internal state to humans to enable a smooth interaction. Nonverbal communication is widely used to communicate information during human-robot interaction, however, such methods may also be misunderstood, leading to communication errors. In this work, we explore modulating the acoustic parameter values (pitch bend, beats per minute, beats per loop) of nonverbal auditory expressions to convey functional robot states (accomplished, progressing, stuck). We propose a reinforcement learning (RL) algorithm based on noisy human feedback to produce accurately interpreted nonverbal auditory expressions. The proposed approach was evaluated through a user study with 24 participants. The results demonstrate that: 1. Our proposed RL-based approach is able to learn suitable acoustic parameter values which improve the users' ability to correctly identify the state of the robot. 2. Algorithm initialization informed by previous user data can be used to significantly speed up the learning process. 3. The method used for algorithm initialization strongly influences whether participants converge to similar sounds for each robot state. 4. Modulation of pitch bend has the largest influence on user association between sounds and robotic states.
Named Entity Recognition (NER) is an essential steppingstone in the field of natural language processing. Although promising performance has been achieved by various distantly supervised models, we argue that distant supervision inevitably introduces incomplete and noisy annotations, which may mislead the model training process. To address this issue, we propose a robust NER model named BOND-MoE based on Mixture of Experts (MoE). Instead of relying on a single model for NER prediction, multiple models are trained and ensembled under the Expectation-Maximization (EM) framework, so that noisy supervision can be dramatically alleviated. In addition, we introduce a fair assignment module to balance the document-model assignment process. Extensive experiments on real-world datasets show that the proposed method achieves state-of-the-art performance compared with other distantly supervised NER.
Fully supervised models are predominant in Bayesian active learning. We argue that their neglect of the information present in unlabelled data harms not just predictive performance but also decisions about what data to acquire. Our proposed solution is a simple framework for semi-supervised Bayesian active learning. We find it produces better-performing models than either conventional Bayesian active learning or semi-supervised learning with randomly acquired data. It is also easier to scale up than the conventional approach. As well as supporting a shift towards semi-supervised models, our findings highlight the importance of studying models and acquisition methods in conjunction.
Skin distortion is a long standing challenge in fingerprint matching, which causes false non-matches. Previous studies have shown that the recognition rate can be improved by estimating the distortion field from a distorted fingerprint and then rectifying it into a normal fingerprint. However, existing rectification methods are based on principal component representation of distortion fields, which is not accurate and are very sensitive to finger pose. In this paper, we propose a rectification method where a self-reference based network is utilized to directly estimate the dense distortion field of distorted fingerprint instead of its low dimensional representation. This method can output accurate distortion fields of distorted fingerprints with various finger poses. Considering the limited number and variety of distorted fingerprints in the existing public dataset, we collected more distorted fingerprints with diverse finger poses and distortion patterns as a new database. Experimental results demonstrate that our proposed method achieves the state-of-the-art rectification performance in terms of distortion field estimation and rectified fingerprint matching.
Poisoning efficiency plays a critical role in poisoning-based backdoor attacks. To evade detection, attackers aim to use the fewest poisoning samples while achieving the desired attack strength. Although efficient triggers have significantly improved poisoning efficiency, there is still room for further enhancement. Recently, selecting efficient samples has shown promise, but it often requires a proxy backdoor injection task to identify an efficient poisoning sample set. However, the proxy attack-based approach can lead to performance degradation if the proxy attack settings differ from those used by the actual victims due to the shortcut of backdoor learning. This paper presents a Proxy attack-Free Strategy (PFS) designed to identify efficient poisoning samples based on individual similarity and ensemble diversity, effectively addressing the mentioned concern. The proposed PFS is motivated by the observation that selecting the to-be-poisoned samples with high similarity between clean samples and their corresponding poisoning samples results in significantly higher attack success rates compared to using samples with low similarity. Furthermore, theoretical analyses for this phenomenon are provided based on the theory of active learning and neural tangent kernel. We comprehensively evaluate the proposed strategy across various datasets, triggers, poisoning rates, architectures, and training hyperparameters. Our experimental results demonstrate that PFS enhances backdoor attack efficiency, while also exhibiting a remarkable speed advantage over prior proxy-dependent selection methodologies.
Test smells can pose difficulties during testing activities, such as poor maintainability, non-deterministic behavior, and incomplete verification. Existing research has extensively addressed test smells in automated software tests but little attention has been given to smells in natural language tests. While some research has identified and catalogued such smells, there is a lack of systematic approaches for their removal. Consequently, there is also a lack of tools to automatically identify and remove natural language test smells. This paper introduces a catalog of transformations designed to remove seven natural language test smells and a companion tool implemented using Natural Language Processing (NLP) techniques. Our work aims to enhance the quality and reliability of natural language tests during software development. The research employs a two-fold empirical strategy to evaluate its contributions. First, a survey involving 15 software testing professionals assesses the acceptance and usefulness of the catalog's transformations. Second, an empirical study evaluates our tool to remove natural language test smells by analyzing a sample of real-practice tests from the Ubuntu OS. The results indicate that software testing professionals find the transformations valuable. Additionally, the automated tool demonstrates a good level of precision, as evidenced by a F-Measure rate of 83.70%
As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.
The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.
When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.