Maneuvering target tracking will be an important service of future wireless networks to assist innovative applications such as intelligent transportation. However, tracking maneuvering targets by cellular networks faces many challenges. For example, the dense network and high-speed targets make the selection of the sensing nodes (SNs), e.g., base stations, and the associated power allocation very difficult, given the stringent latency requirement of sensing applications. Existing methods have demonstrated engaging tracking performance, but with very high computational complexity. In this paper, we propose a model-driven deep learning approach for SN selection to meet the latency requirement. To this end, we first propose an iterative SN selection method by jointly exploiting the majorization-minimization (MM) framework and the alternating direction method of multipliers (ADMM). Then, we unfold the iterative algorithm as a deep neural network (DNN) and prove its convergence. The proposed model-driven method has a low computational complexity, because the number of layers is less than the number of iterations required by the original algorithm, and each layer only involves simple matrix-vector additions/multiplications. Finally, we propose an efficient power allocation method based on fixed point (FP) water filling (WF) and solve the joint SN selection and power allocation problem under the alternative optimization framework. Simulation results show that the proposed method achieves better performance than the conventional optimization-based methods with much lower computational complexity.
Ensembling a neural network is a widely recognized approach to enhance model performance, estimate uncertainty, and improve robustness in deep supervised learning. However, deep ensembles often come with high computational costs and memory demands. In addition, the efficiency of a deep ensemble is related to diversity among the ensemble members which is challenging for large, over-parameterized deep neural networks. Moreover, ensemble learning has not yet seen such widespread adoption, and it remains a challenging endeavor for self-supervised or unsupervised representation learning. Motivated by these challenges, we present a novel self-supervised training regime that leverages an ensemble of independent sub-networks, complemented by a new loss function designed to encourage diversity. Our method efficiently builds a sub-model ensemble with high diversity, leading to well-calibrated estimates of model uncertainty, all achieved with minimal computational overhead compared to traditional deep self-supervised ensembles. To evaluate the effectiveness of our approach, we conducted extensive experiments across various tasks, including in-distribution generalization, out-of-distribution detection, dataset corruption, and semi-supervised settings. The results demonstrate that our method significantly improves prediction reliability. Our approach not only achieves excellent accuracy but also enhances calibration, surpassing baseline performance across a wide range of self-supervised architectures in computer vision, natural language processing, and genomics data.
Social media platforms have revolutionized traditional communication techniques by enabling people globally to connect instantaneously, openly, and frequently. People use social media to share personal stories and express their opinion. Negative emotions such as thoughts of death, self-harm, and hardship are commonly expressed on social media, particularly among younger generations. As a result, using social media to detect suicidal thoughts will help provide proper intervention that will ultimately deter others from self-harm and committing suicide and stop the spread of suicidal ideation on social media. To investigate the ability to detect suicidal thoughts in Arabic tweets automatically, we developed a novel Arabic suicidal tweets dataset, examined several machine learning models, including Na\"ive Bayes, Support Vector Machine, K-Nearest Neighbor, Random Forest, and XGBoost, trained on word frequency and word embedding features, and investigated the ability of pre-trained deep learning models, AraBert, AraELECTRA, and AraGPT2, to identify suicidal thoughts in Arabic tweets. The results indicate that SVM and RF models trained on character n-gram features provided the best performance in the machine learning models, with 86% accuracy and an F1 score of 79%. The results of the deep learning models show that AraBert model outperforms other machine and deep learning models, achieving an accuracy of 91\% and an F1-score of 88%, which significantly improves the detection of suicidal ideation in the Arabic tweets dataset. To the best of our knowledge, this is the first study to develop an Arabic suicidality detection dataset from Twitter and to use deep-learning approaches in detecting suicidality in Arabic posts.
In up-to-date machine learning (ML) applications on cloud or edge computing platforms, batching is an important technique for providing efficient and economical services at scale. In particular, parallel computing resources on the platforms, such as graphics processing units (GPUs), have higher computational and energy efficiency with larger batch sizes. However, larger batch sizes may also result in longer response time, and thus it requires a judicious design. This paper aims to provide a dynamic batching policy that strikes a balance between efficiency and latency. The GPU-based inference service is modeled as a batch service queue with batch-size dependent processing time. Then, the design of dynamic batching is a continuous-time average-cost problem, and is formulated as a semi-Markov decision process (SMDP) with the objective of minimizing the weighted sum of average response time and average power consumption. The optimal policy is acquired by solving an associated discrete-time Markov decision process (MDP) problem with finite state approximation and "discretization". By introducing an abstract cost to reflect the impact of "tail" states, the space complexity and the time complexity of the procedure can decrease by 63.5% and 98%, respectively. Our results show that the optimal policies potentially possess a control limit structure. Numerical results also show that SMDP-based batching policies can adapt to different traffic intensities and outperform other benchmark policies. Furthermore, the proposed solution has notable flexibility in balancing power consumption and latency.
Federated learning (FL) involves several devices that collaboratively train a shared model without transferring their local data. FL reduces the communication overhead, making it a promising learning method in UAV-enhanced wireless networks with scarce energy resources. Despite the potential, implementing FL in UAV-enhanced networks is challenging, as conventional UAV placement methods that maximize coverage increase the FL delay significantly. Moreover, the uncertainty and lack of a priori information about crucial variables, such as channel quality, exacerbate the problem. In this paper, we first analyze the statistical characteristics of a UAV-enhanced wireless sensor network (WSN) with energy harvesting. We then develop a model and solution based on the multi-objective multi-armed bandit theory to maximize the network coverage while minimizing the FL delay. Besides, we propose another solution that is particularly useful with large action sets and strict energy constraints at the UAVs. Our proposal uses a scalarized best-arm identification algorithm to find the optimal arms that maximize the ratio of the expected reward to the expected energy cost by sequentially eliminating one or more arms in each round. Then, we derive the upper bound on the error probability of our multi-objective and cost-aware algorithm. Numerical results show the effectiveness of our approach.
As multi-robot systems continue to advance and become integral to various applications, managing conflicts and ensuring secure access control are critical challenges that need to be addressed. Access control is essential in multi-robot systems to ensure secure and authorized interactions among robots, protect sensitive data, and prevent unauthorized access to resources. This paper presents a novel framework for customizable conflict resolution and attribute-based access control in multi-robot systems for ROS 2 leveraging the Hyperledger Fabric blockchain. We introduce an attribute-based access control (ABAC) Fabric-ROS 2 bridge to enable secure communication and control between users and robots. By defining conflict resolution policies based on task priorities, robot capabilities, and user-defined constraints, our framework offers a flexible way to resolve conflicts. Additionally, it incorporates attribute-based access control, granting access rights based on user and robot attributes. ABAC offers a modular approach to control access compared to existing access control approaches in ROS 2, such as SROS2. Through this framework, multi-robot systems can be managed efficiently, securely, and adaptably, ensuring controlled access to resources and managing conflicts. Our experimental evaluation shows that our framework marginally improves latency and throughput over exiting Fabric and ROS 2 integration solutions. At higher network load, it is the only solution to operate reliably without a diverging transaction commitment latency. We also demonstrate how conflicts arising from simultaneous control or a robot by two users are resolved in real-time and motion distortion is effectively eliminated.
Toward user-driven Metaverse applications with fast wireless connectivity and tremendous computing demand through future 6G infrastructures, we propose a Brain-Computer Interface (BCI) enabled framework that paves the way for the creation of intelligent human-like avatars. Our approach takes a first step toward the Metaverse systems in which the digital avatars are envisioned to be more intelligent by collecting and analyzing brain signals through cellular networks. In our proposed system, Metaverse users experience Metaverse applications while sending their brain signals via uplink wireless channels in order to create intelligent human-like avatars at the base station. As such, the digital avatars can not only give useful recommendations for the users but also enable the system to create user-driven applications. Our proposed framework involves a mixed decision-making and classification problem in which the base station has to allocate its computing and radio resources to the users and classify the brain signals of users in an efficient manner. To this end, we propose a hybrid training algorithm that utilizes recent advances in deep reinforcement learning to address the problem. Specifically, our hybrid training algorithm contains three deep neural networks cooperating with each other to enable better realization of the mixed decision-making and classification problem. Simulation results show that our proposed framework can jointly address resource allocation for the system and classify brain signals of the users with highly accurate predictions.
The next generation of wireless communication technology is anticipated to address the communication reliability challenges encountered in high-speed mobile communication scenarios. An Orthogonal Time Frequency Space (OTFS) system has been introduced as a solution that effectively mitigates these issues. However, OTFS is associated with relatively high pilot overhead and multiuser multiplexing overhead. In response to these concerns within the OTFS framework, a novel modulation technology known as Affine Frequency Division Multiplexing (AFDM) which is based on the discrete affine Fourier transform has emerged. AFDM effectively resolves the challenges by achieving full diversity through parameter adjustments aligned with the channel's delay-Doppler profile. Consequently, AFDM is capable of achieving performance levels comparable to OTFS. As the research on AFDM detection is currently limited, we present a low-complexity yet efficient message passing (MP) algorithm. This algorithm handles joint interference cancellation and detection while capitalizing on the inherent sparsity of the channel. Based on simulation results, the MP detection algorithm outperforms Minimum Mean Square Error (MMSE) and Maximal Ratio Combining (MRC) detection techniques.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Visual information extraction (VIE) has attracted considerable attention recently owing to its various advanced applications such as document understanding, automatic marking and intelligent education. Most existing works decoupled this problem into several independent sub-tasks of text spotting (text detection and recognition) and information extraction, which completely ignored the high correlation among them during optimization. In this paper, we propose a robust visual information extraction system (VIES) towards real-world scenarios, which is a unified end-to-end trainable framework for simultaneous text detection, recognition and information extraction by taking a single document image as input and outputting the structured information. Specifically, the information extraction branch collects abundant visual and semantic representations from text spotting for multimodal feature fusion and conversely, provides higher-level semantic clues to contribute to the optimization of text spotting. Moreover, regarding the shortage of public benchmarks, we construct a fully-annotated dataset called EPHOIE (//github.com/HCIILAB/EPHOIE), which is the first Chinese benchmark for both text spotting and visual information extraction. EPHOIE consists of 1,494 images of examination paper head with complex layouts and background, including a total of 15,771 Chinese handwritten or printed text instances. Compared with the state-of-the-art methods, our VIES shows significant superior performance on the EPHOIE dataset and achieves a 9.01% F-score gain on the widely used SROIE dataset under the end-to-end scenario.