亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large Language Models (LLMs) are emerging as promising approaches to enhance session-based recommendation (SBR), where both prompt-based and fine-tuning-based methods have been widely investigated to align LLMs with SBR. However, the former methods struggle with optimal prompts to elicit the correct reasoning of LLMs due to the lack of task-specific feedback, leading to unsatisfactory recommendations. Although the latter methods attempt to fine-tune LLMs with domain-specific knowledge, they face limitations such as high computational costs and reliance on open-source backbones. To address such issues, we propose a Reflective Reinforcement Large Language Model (Re2LLM) for SBR, guiding LLMs to focus on specialized knowledge essential for more accurate recommendations effectively and efficiently. In particular, we first design the Reflective Exploration Module to effectively extract knowledge that is readily understandable and digestible by LLMs. To be specific, we direct LLMs to examine recommendation errors through self-reflection and construct a knowledge base (KB) comprising hints capable of rectifying these errors. To efficiently elicit the correct reasoning of LLMs, we further devise the Reinforcement Utilization Module to train a lightweight retrieval agent. It learns to select hints from the constructed KB based on the task-specific feedback, where the hints can serve as guidance to help correct LLMs reasoning for better recommendations. Extensive experiments on multiple real-world datasets demonstrate that our method consistently outperforms state-of-the-art methods.

相關內容

We propose Diffusion Inference-Time T-Optimization (DITTO), a general-purpose frame-work for controlling pre-trained text-to-music diffusion models at inference-time via optimizing initial noise latents. Our method can be used to optimize through any differentiable feature matching loss to achieve a target (stylized) output and leverages gradient checkpointing for memory efficiency. We demonstrate a surprisingly wide-range of applications for music generation including inpainting, outpainting, and looping as well as intensity, melody, and musical structure control - all without ever fine-tuning the underlying model. When we compare our approach against related training, guidance, and optimization-based methods, we find DITTO achieves state-of-the-art performance on nearly all tasks, including outperforming comparable approaches on controllability, audio quality, and computational efficiency, thus opening the door for high-quality, flexible, training-free control of diffusion models. Sound examples can be found at //DITTO-Music.github.io/web/.

NUBO, short for Newcastle University Bayesian Optimization, is a Bayesian optimization framework for optimizing expensive-to-evaluate black-box functions, such as physical experiments and computer simulators. Bayesian optimization is a cost-efficient optimization strategy that uses surrogate modeling via Gaussian processes to represent an objective function and acquisition functions to guide the selection of candidate points to approximate the global optimum of the objective function. NUBO focuses on transparency and user experience to make Bayesian optimization accessible to researchers from all disciplines. Clean and understandable code, precise references, and thorough documentation ensure transparency, while a modular and flexible design, easy-to-write syntax, and careful selection of Bayesian optimization algorithms ensure a good user experience. NUBO allows users to tailor Bayesian optimization to their problem by writing a custom optimization loop using the provided building blocks. It supports sequential single-point, parallel multi-point, and asynchronous optimization of bounded, constrained, and mixed (discrete and continuous) parameter input spaces. Only algorithms and methods extensively tested and validated to perform well are included in NUBO. This ensures that the package remains compact and does not overwhelm the user with an unnecessarily large number of options. The package is written in Python but does not require expert knowledge of Python to optimize simulators and experiments. NUBO is distributed as open-source software under the BSD 3-Clause license.

Lexical Substitution discovers appropriate substitutes for a given target word in a context sentence. However, the task fails to consider substitutes that are of equal or higher proficiency than the target, an aspect that could be beneficial for language learners looking to improve their writing. To bridge this gap, we propose a new task, language proficiency-oriented lexical substitution. We also introduce ProLex, a novel benchmark designed to assess systems' ability to generate not only appropriate substitutes but also substitutes that demonstrate better language proficiency. Besides the benchmark, we propose models that can automatically perform the new task. We show that our best model, a Llama2-13B model fine-tuned with task-specific synthetic data, outperforms ChatGPT by an average of 3.2% in F-score and achieves comparable results with GPT-4 on ProLex.

In the quest for artificial general intelligence, Multi-modal Large Language Models (MLLMs) have emerged as a focal point in recent advancements. However, the predominant focus remains on developing their capabilities in static image understanding. The potential of MLLMs in processing sequential visual data is still insufficiently explored, highlighting the absence of a comprehensive, high-quality assessment of their performance. In this paper, we introduce Video-MME, the first-ever full-spectrum, Multi-Modal Evaluation benchmark of MLLMs in Video analysis. Our work distinguishes from existing benchmarks through four key features: 1) Diversity in video types, spanning 6 primary visual domains with 30 subfields to ensure broad scenario generalizability; 2) Duration in temporal dimension, encompassing both short-, medium-, and long-term videos, ranging from 11 seconds to 1 hour, for robust contextual dynamics; 3) Breadth in data modalities, integrating multi-modal inputs besides video frames, including subtitles and audios, to unveil the all-round capabilities of MLLMs; 4) Quality in annotations, utilizing rigorous manual labeling by expert annotators to facilitate precise and reliable model assessment. 900 videos with a total of 256 hours are manually selected and annotated by repeatedly viewing all the video content, resulting in 2,700 question-answer pairs. With Video-MME, we extensively evaluate various state-of-the-art MLLMs, including GPT-4 series and Gemini 1.5 Pro, as well as open-source image models like InternVL-Chat-V1.5 and video models like LLaVA-NeXT-Video. Our experiments reveal that Gemini 1.5 Pro is the best-performing commercial model, significantly outperforming the open-source models. Our dataset along with these findings underscores the need for further improvements in handling longer sequences and multi-modal data. Project Page: //video-mme.github.io

Large language models~(LLMs) have recently demonstrated promising performance in many tasks. However, the high storage and computational cost of LLMs has become a challenge for deploying LLMs. Weight quantization has been widely used for model compression, which can reduce both storage and computational cost. Most existing weight quantization methods for LLMs use a rank-one codebook for quantization, which results in substantial accuracy loss when the compression ratio is high. In this paper, we propose a novel weight quantization method, called low-rank codebook based quantization~(LCQ), for LLMs. LCQ adopts a low-rank codebook, the rank of which can be larger than one, for quantization. Experiments show that LCQ can achieve better accuracy than existing methods with a negligibly extra storage cost.

Traditional language model alignment methods, such as Direct Preference Optimization (DPO), are limited by their dependence on static, pre-collected paired preference data, which hampers their adaptability and practical applicability. To overcome this limitation, we introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data. Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation. Specifically, we employ an Exponential Moving Average (EMA) model in conjunction with a replay buffer to enable dynamic updates of response segments, effectively integrating real-time feedback with insights from historical data. Our comprehensive evaluations of the LLaMA3-8B and Mistral-7B models across benchmarks, including the Open LLM Leaderboard, IFEval, AlpacaEval 2.0, and MT-Bench, demonstrate that SAPO matches or surpasses established offline contrastive baselines, such as DPO and Odds Ratio Preference Optimization, and outperforms offline self-play methods like SPIN. Our code is available at //github.com/yinyueqin/SAPO

Human Mesh Recovery (HMR) from a single RGB image is a highly ambiguous problem, as similar 2D projections can correspond to multiple 3D interpretations. Nevertheless, most HMR methods overlook this ambiguity and make a single prediction without accounting for the associated uncertainty. A few approaches generate a distribution of human meshes, enabling the sampling of multiple predictions; however, none of them is competitive with the latest single-output model when making a single prediction. This work proposes a new approach based on masked generative modeling. By tokenizing the human pose and shape, we formulate the HMR task as generating a sequence of discrete tokens conditioned on an input image. We introduce MEGA, a MaskEd Generative Autoencoder trained to recover human meshes from images and partial human mesh token sequences. Given an image, our flexible generation scheme allows us to predict a single human mesh in deterministic mode or to generate multiple human meshes in stochastic mode. MEGA enables us to propose multiple outputs and to evaluate the uncertainty of the predictions. Experiments on in-the-wild benchmarks show that MEGA achieves state-of-the-art performance in deterministic and stochastic modes, outperforming single-output and multi-output approaches.

Large Language Models (LLMs) have demonstrated potential in cybersecurity applications but have also caused lower confidence due to problems like hallucinations and a lack of truthfulness. Existing benchmarks provide general evaluations but do not sufficiently address the practical and applied aspects of LLM performance in cybersecurity-specific tasks. To address this gap, we introduce the SECURE (Security Extraction, Understanding \& Reasoning Evaluation), a benchmark designed to assess LLMs performance in realistic cybersecurity scenarios. SECURE includes six datasets focussed on the Industrial Control System sector to evaluate knowledge extraction, understanding, and reasoning based on industry-standard sources. Our study evaluates seven state-of-the-art models on these tasks, providing insights into their strengths and weaknesses in cybersecurity contexts, and offer recommendations for improving LLMs reliability as cyber advisory tools.

As Large Language Models (LLMs) have made significant advancements across various tasks, such as question answering, translation, text summarization, and dialogue systems, the need for accuracy in information becomes crucial, especially for serious financial products serving billions of users like Alipay. However, for a real-world product serving millions of users, the inference speed of LLMs becomes a critical factor compared to a mere experimental model. Hence, this paper presents a generic framework for accelerating the inference process, resulting in a substantial increase in speed and cost reduction for our LLM-based scenarios, with lossless generation accuracy. In the traditional inference process, each token is generated sequentially by the LLM, leading to a time consumption proportional to the number of generated tokens. To enhance this process, our framework, named \textit{lookahead}, introduces a \textit{multi-branch} strategy. Instead of generating a single token at a time, we propose a Trie-based retrieval and verification mechanism to be able to accept several tokens at a forward step. Our strategy offers two distinct advantages: (1) it guarantees absolute correctness of the output, avoiding any approximation algorithms, and (2) the worst-case performance of our approach is equivalent to the conventional process. We conduct extensive experiments to demonstrate the significant improvements achieved by applying our inference acceleration framework. Our framework is widely deployed in Alipay since April 2023, and obtain remarkable 2.66x to 6.26x speedup. Our code is available at //github.com/alipay/PainlessInferenceAcceleration.

Attention mechanism has been used as an ancillary means to help RNN or CNN. However, the Transformer (Vaswani et al., 2017) recently recorded the state-of-the-art performance in machine translation with a dramatic reduction in training time by solely using attention. Motivated by the Transformer, Directional Self Attention Network (Shen et al., 2017), a fully attention-based sentence encoder, was proposed. It showed good performance with various data by using forward and backward directional information in a sentence. But in their study, not considered at all was the distance between words, an important feature when learning the local dependency to help understand the context of input text. We propose Distance-based Self-Attention Network, which considers the word distance by using a simple distance mask in order to model the local dependency without losing the ability of modeling global dependency which attention has inherent. Our model shows good performance with NLI data, and it records the new state-of-the-art result with SNLI data. Additionally, we show that our model has a strength in long sentences or documents.

北京阿比特科技有限公司