亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Monitoring the correctness of distributed cyber-physical systems is essential. Detecting possible safety violations can be hard when some samples are uncertain or missing. We monitor here black-box cyber-physical system, with logs being uncertain both in the state and timestamp dimensions: that is, not only the logged value is known with some uncertainty, but the time at which the log was made is uncertain too. In addition, we make use of an over-approximated yet expressive model, given by a non-linear extension of dynamical systems. Given an offline log, our approach is able to monitor the log against safety specifications with a limited number of false alarms. As a second contribution, we show that our approach can be used online to minimize the number of sample triggers, with the aim at energetic efficiency. We apply our approach to three benchmarks, an anesthesia model, an adaptive cruise controller and an aircraft orbiting system.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Learning · 回合 · MoDELS · 遷移學習 ·
2023 年 2 月 8 日

State of the art reinforcement learning has enabled training agents on tasks of ever increasing complexity. However, the current paradigm tends to favor training agents from scratch on every new task or on collections of tasks with a view towards generalizing to novel task configurations. The former suffers from poor data efficiency while the latter is difficult when test tasks are out-of-distribution. Agents that can effectively transfer their knowledge about the world pose a potential solution to these issues. In this paper, we investigate transfer learning in the context of model-based agents. Specifically, we aim to understand when exactly environment models have an advantage and why. We find that a model-based approach outperforms controlled model-free baselines for transfer learning. Through ablations, we show that both the policy and dynamics model learnt through exploration matter for successful transfer. We demonstrate our results across three domains which vary in their requirements for transfer: in-distribution procedural (Crafter), in-distribution identical (RoboDesk), and out-of-distribution (Meta-World). Our results show that intrinsic exploration combined with environment models present a viable direction towards agents that are self-supervised and able to generalize to novel reward functions.

Many important computer vision applications are naturally formulated as regression problems. Within medical imaging, accurate regression models have the potential to automate various tasks, helping to lower costs and improve patient outcomes. Such safety-critical deployment does however require reliable estimation of model uncertainty, also under the wide variety of distribution shifts that might be encountered in practice. Motivated by this, we set out to investigate the reliability of regression uncertainty estimation methods under various real-world distribution shifts. To that end, we propose an extensive benchmark of 8 image-based regression datasets with different types of challenging distribution shifts. We then employ our benchmark to evaluate many of the most common uncertainty estimation methods, as well as two state-of-the-art uncertainty scores from the task of out-of-distribution detection. We find that while methods are well calibrated when there is no distribution shift, they all become highly overconfident on many of the benchmark datasets. This uncovers important limitations of current uncertainty estimation methods, and the proposed benchmark therefore serves as a challenge to the research community. We hope that our benchmark will spur more work on how to develop truly reliable regression uncertainty estimation methods. Code is available at //github.com/fregu856/regression_uncertainty.

Differential replication through copying refers to the process of replicating the decision behavior of a machine learning model using another model that possesses enhanced features and attributes. This process is relevant when external constraints limit the performance of an industrial predictive system. Under such circumstances, copying enables the retention of original prediction capabilities while adapting to new demands. Previous research has focused on the single-pass implementation for copying. This paper introduces a novel sequential approach that significantly reduces the amount of computational resources needed to train or maintain a copy, leading to reduced maintenance costs for companies using machine learning models in production. The effectiveness of the sequential approach is demonstrated through experiments with synthetic and real-world datasets, showing significant reductions in time and resources, while maintaining or improving accuracy.

In Bayesian analysis, the selection of a prior distribution is typically done by considering each parameter in the model. While this can be convenient, in many scenarios it may be desirable to place a prior on a summary measure of the model instead. In this work, we propose a prior on the model fit, as measured by a Bayesian coefficient of determination (R2), which then induces a prior on the individual parameters. We achieve this by placing a beta prior on R2 and then deriving the induced prior on the global variance parameter for generalized linear mixed models. We derive closed-form expressions in many scenarios and present several approximation strategies when an analytic form is not possible and/or to allow for easier computation. In these situations, we suggest approximating the prior by using a generalized beta prime distribution and provide a simple default prior construction scheme. This approach is quite flexible and can be easily implemented in standard Bayesian software. Lastly, we demonstrate the performance of the method on simulated data, where it particularly shines in high-dimensional examples, as well as real-world data, which shows its ability to model spatial correlation in the random effects.

In this paper, we solve the optimal target detection problem employing the thoughts and methodologies of Shannon's information theory. Introducing a target state variable into a general radar system model, an equivalent detection channel is derived, and the a posteriori probability distribution is given accordingly. Detection information (DI) is proposed for measuring system performance, which holds for any specific detection method. Moreover, we provide an analytic expression for the false alarm probability concerning the a priori probability. In particular, for a sufficiently large observation interval, the false alarm probability equals the a priori probability of the existing state. A stochastic detection method, the sampling a posteriori probability, is also proposed. The target detection theorem is proved mathematically, which indicates that DI is an achievable theoretical limit of target detection. Specifically, when empirical DI is gained from the sampling a posteriori detection method approaches the DI, the probability of failed decisions tends to be zero. Conversely, there is no detector whose empirical DI is more than DI. Numerical simulations are performed to verify the correctness of the theorems. The results demonstrate that the maximum a posteriori and the Neyman-Pearson detection methods are upper bounded by the theoretical limit.

Model fairness is an essential element for Trustworthy AI. While many techniques for model fairness have been proposed, most of them assume that the training and deployment data distributions are identical, which is often not true in practice. In particular, when the bias between labels and sensitive groups changes, the fairness of the trained model is directly influenced and can worsen. We make two contributions for solving this problem. First, we analytically show that existing in-processing fair algorithms have fundamental limits in accuracy and group fairness. We introduce the notion of correlation shifts, which can explicitly capture the change of the above bias. Second, we propose a novel pre-processing step that samples the input data to reduce correlation shifts and thus enables the in-processing approaches to overcome their limitations. We formulate an optimization problem for adjusting the data ratio among labels and sensitive groups to reflect the shifted correlation. A key benefit of our approach lies in decoupling the roles of pre- and in-processing approaches: correlation adjustment via pre-processing and unfairness mitigation on the processed data via in-processing. Experiments show that our framework effectively improves existing in-processing fair algorithms w.r.t. accuracy and fairness, both on synthetic and real datasets.

Autonomous exploration is one of the important parts to achieve the fast autonomous mapping and target search. However, most of the existing methods are facing low-efficiency problems caused by low-quality trajectory or back-and-forth maneuvers. To improve the exploration efficiency in unknown environments, a fast autonomous exploration planner (FAEP) is proposed in this paper. Different from existing methods, we firstly design a novel frontiers exploration sequence generation method to obtain a more reasonable exploration path, which considers not only the flight-level but frontier-level factors in the asymmetric traveling salesman problem (ATSP). Then, according to the exploration sequence and the distribution of frontiers, an adaptive yaw planning method is proposed to cover more frontiers by yaw change during an exploration journey. In addition, to increase the speed and fluency of flight, a dynamic replanning strategy is also adopted. We present sufficient comparison and evaluation experiments in simulation environments. Experimental results show the proposed exploration planner has better performance in terms of flight time and flight distance compared to typical and state-of-the-art methods. Moreover, the effectiveness of the proposed method is further evaluated in real-world environments.

Model-based methods have recently shown great potential for off-policy evaluation (OPE); offline trajectories induced by behavioral policies are fitted to transitions of Markov decision processes (MDPs), which are used to rollout simulated trajectories and estimate the performance of policies. Model-based OPE methods face two key challenges. First, as offline trajectories are usually fixed, they tend to cover limited state and action space. Second, the performance of model-based methods can be sensitive to the initialization of their parameters. In this work, we propose the variational latent branching model (VLBM) to learn the transition function of MDPs by formulating the environmental dynamics as a compact latent space, from which the next states and rewards are then sampled. Specifically, VLBM leverages and extends the variational inference framework with the recurrent state alignment (RSA), which is designed to capture as much information underlying the limited training data, by smoothing out the information flow between the variational (encoding) and generative (decoding) part of VLBM. Moreover, we also introduce the branching architecture to improve the model's robustness against randomly initialized model weights. The effectiveness of the VLBM is evaluated on the deep OPE (DOPE) benchmark, from which the training trajectories are designed to result in varied coverage of the state-action space. We show that the VLBM outperforms existing state-of-the-art OPE methods in general.

Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen before and cannot make a safe decision. This problem first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems are closely related to OOD detection in terms of motivation and methodology. These include anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). Despite having different definitions and problem settings, these problems often confuse readers and practitioners, and as a result, some existing studies misuse terms. In this survey, we first present a generic framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Then, we conduct a thorough review of each of the five areas by summarizing their recent technical developments. We conclude this survey with open challenges and potential research directions.

Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.

北京阿比特科技有限公司