The challenging propagation environment, combined with the hardware limitations of mmWave systems, gives rise to the need for accurate initial access beam alignment strategies with low latency and high achievable beamforming gain. Much of the recent work in this area either focuses on one-sided beam alignment, or, joint beam alignment methods where both sides of the link perform a sequence of fixed channel probing steps. Codebook-based non-adaptive beam alignment schemes have the potential to allow multiple user equipment (UE) to perform initial access beam alignment in parallel whereas adaptive schemes are favourable in achievable beamforming gain. This work introduces a novel deep learning based joint beam alignment scheme that aims to combine the benefits of adaptive, codebook-free beam alignment at the UE side with the advantages of a codebook-sweep based scheme at the base station. The proposed end-to-end trainable scheme is compatible with current cellular standard signaling and can be readily integrated into the standard without requiring significant changes to it. Extensive simulations demonstrate superior performance of the proposed approach over purely codebook-based ones.
With the rapid advancement of hardware and software technologies, research in autonomous driving has seen significant growth. The prevailing framework for multi-sensor autonomous driving encompasses sensor installation, perception, path planning, decision-making, and motion control. At the perception phase, a common approach involves utilizing neural networks to infer 3D bounding box (Bbox) attributes from raw sensor data, including classification, size, and orientation. In this paper, we present a novel attribute and its corresponding algorithm: 3D object visibility. By incorporating multi-task learning, the introduction of this attribute, visibility, negligibly affects the model's effectiveness and efficiency. Our proposal of this attribute and its computational strategy aims to expand the capabilities for downstream tasks, thereby enhancing the safety and reliability of real-time autonomous driving in real-world scenarios.
Efficient deployment of neural networks (NN) requires the co-optimization of accuracy and latency. For example, hardware-aware neural architecture search has been used to automatically find NN architectures that satisfy a latency constraint on a specific hardware device. Central to these search algorithms is a prediction model that is designed to provide a hardware latency estimate for a candidate NN architecture. Recent research has shown that the sample efficiency of these predictive models can be greatly improved through pre-training on some \textit{training} devices with many samples, and then transferring the predictor on the \textit{test} (target) device. Transfer learning and meta-learning methods have been used for this, but often exhibit significant performance variability. Additionally, the evaluation of existing latency predictors has been largely done on hand-crafted training/test device sets, making it difficult to ascertain design features that compose a robust and general latency predictor. To address these issues, we introduce a comprehensive suite of latency prediction tasks obtained in a principled way through automated partitioning of hardware device sets. We then design a general latency predictor to comprehensively study (1) the predictor architecture, (2) NN sample selection methods, (3) hardware device representations, and (4) NN operation encoding schemes. Building on conclusions from our study, we present an end-to-end latency predictor training strategy that outperforms existing methods on 11 out of 12 difficult latency prediction tasks, improving latency prediction by 22.5\% on average, and up to to 87.6\% on the hardest tasks. Focusing on latency prediction, our HW-Aware NAS reports a $5.8\times$ speedup in wall-clock time. Our code is available on \href{//github.com/abdelfattah-lab/nasflat_latency}{//github.com/abdelfattah-lab/nasflat\_latency}.
Background: The company-internal reuse of software components owned by organizational units in different countries is taxable. Objective: In this article, we introduce the concerns of tax authorities as stakeholders and investigate how software companies can describe their globally distributed software architectures to tax authorities. Method: In an experimental simulation, we (1) develop a viewpoint that frames the concerns of tax authorities, (2) create a view of a large-scale, globally distributed microservice architecture from a multinational enterprise, and (3) evaluate the resulting software architecture description with a panel of four tax experts. Results: The panel found our proposed architectural viewpoint properly and sufficiently frames the concerns of taxation stakeholders. The architecture description reveals that almost 70% of all reuse relationships between the 2560 microservices from our case company are cross-border and, therefore, taxable. However, unclear jurisdictions of owners and potentially insufficient definitions of code ownership and software component introduce significant noise to the view that limits the usefulness and explanatory power of our software architecture description. Conclusion: Although our software architecture description already provides a solid foundation and reveals the importance of tax compliance in software architectures, we stumbled over several fundamental open questions, forming new frontiers in software engineering.
The proliferation of software vulnerabilities poses a significant challenge for security databases and analysts tasked with their timely identification, classification, and remediation. With the National Vulnerability Database (NVD) reporting an ever-increasing number of vulnerabilities, the traditional manual analysis becomes untenably time-consuming and prone to errors. This paper introduces VulnScopper, an innovative approach that utilizes multi-modal representation learning, combining Knowledge Graphs (KG) and Natural Language Processing (NLP), to automate and enhance the analysis of software vulnerabilities. Leveraging ULTRA, a knowledge graph foundation model, combined with a Large Language Model (LLM), VulnScopper effectively handles unseen entities, overcoming the limitations of previous KG approaches. We evaluate VulnScopper on two major security datasets, the NVD and the Red Hat CVE database. Our method significantly improves the link prediction accuracy between Common Vulnerabilities and Exposures (CVEs), Common Weakness Enumeration (CWEs), and Common Platform Enumerations (CPEs). Our results show that VulnScopper outperforms existing methods, achieving up to 78% Hits@10 accuracy in linking CVEs to CPEs and CWEs and presenting an 11.7% improvement over large language models in predicting CWE labels based on the Red Hat database. Based on the NVD, only 6.37% of the linked CPEs are being published during the first 30 days; many of them are related to critical and high-risk vulnerabilities which, according to multiple compliance frameworks (such as CISA and PCI), should be remediated within 15-30 days. Our model can uncover new products linked to vulnerabilities, reducing remediation time and improving vulnerability management. We analyzed several CVEs from 2023 to showcase this ability.
For scientific software, especially those used for large-scale simulations, achieving good performance and efficiently using the available hardware resources is essential. It is important to regularly perform benchmarks to ensure the efficient use of hardware and software when systems are changing and the software evolves. However, this can become quickly very tedious when many options for parameters, solvers, and hardware architectures are available. We present a continuous benchmarking strategy that automates benchmarking new code changes on high-performance computing clusters. This makes it possible to track how each code change affects the performance and how it evolves.
Decision support systems for classification tasks are predominantly designed to predict the value of the ground truth labels. However, since their predictions are not perfect, these systems also need to make human experts understand when and how to use these predictions to update their own predictions. Unfortunately, this has been proven challenging. In this context, it has been recently argued that an alternative type of decision support systems may circumvent this challenge. Rather than providing a single label prediction, these systems provide a set of label prediction values constructed using a conformal predictor, namely a prediction set, and forcefully ask experts to predict a label value from the prediction set. However, the design and evaluation of these systems have so far relied on stylized expert models, questioning their promise. In this paper, we revisit the design of this type of systems from the perspective of online learning and develop a methodology that does not require, nor assumes, an expert model. Our methodology leverages the nested structure of the prediction sets provided by any conformal predictor and a natural counterfactual monotonicity assumption to achieve an exponential improvement in regret in comparison to vanilla bandit algorithms. We conduct a large-scale human subject study ($n = 2{,}751$) to compare our methodology to several competitive baselines. The results show that, for decision support systems based on prediction sets, limiting experts' level of agency leads to greater performance than allowing experts to always exercise their own agency. We have made available the data gathered in our human subject study as well as an open source implementation of our system at //github.com/Networks-Learning/counterfactual-prediction-sets.
Partially observable Markov decision processes (POMDPs) have been widely used in many robotic applications for sequential decision-making under uncertainty. POMDP online planning algorithms such as Partially Observable Monte-Carlo Planning (POMCP) can solve very large POMDPs with the goal of maximizing the expected return. But the resulting policies cannot provide safety guarantees which are imperative for real-world safety-critical tasks (e.g., autonomous driving). In this work, we consider safety requirements represented as almost-sure reach-avoid specifications (i.e., the probability to reach a set of goal states is one and the probability to reach a set of unsafe states is zero). We compute shields that restrict unsafe actions which would violate the almost-sure reach-avoid specifications. We then integrate these shields into the POMCP algorithm for safe POMDP online planning. We propose four distinct shielding methods, differing in how the shields are computed and integrated, including factored variants designed to improve scalability. Experimental results on a set of benchmark domains demonstrate that the proposed shielding methods successfully guarantee safety (unlike the baseline POMCP without shielding) on large POMDPs, with negligible impact on the runtime for online planning.
Graph-based methods, pivotal for label inference over interconnected objects in many real-world applications, often encounter generalization challenges, if the graph used for model training differs significantly from the graph used for testing. This work delves into Graph Domain Adaptation (GDA) to address the unique complexities of distribution shifts over graph data, where interconnected data points experience shifts in features, labels, and in particular, connecting patterns. We propose a novel, theoretically principled method, Pairwise Alignment (Pair-Align) to counter graph structure shift by mitigating conditional structure shift (CSS) and label shift (LS). Pair-Align uses edge weights to recalibrate the influence among neighboring nodes to handle CSS and adjusts the classification loss with label weights to handle LS. Our method demonstrates superior performance in real-world applications, including node classification with region shift in social networks, and the pileup mitigation task in particle colliding experiments. For the first application, we also curate the largest dataset by far for GDA studies. Our method shows strong performance in synthetic and other existing benchmark datasets.
Automated industries lead to high quality production, lower manufacturing cost and better utilization of human resources. Robotic manipulator arms have major role in the automation process. However, for complex manipulation tasks, hard coding efficient and safe trajectories is challenging and time consuming. Machine learning methods have the potential to learn such controllers based on expert demonstrations. Despite promising advances, better approaches must be developed to improve safety, reliability, and efficiency of ML methods in both training and deployment phases. This survey aims to review cutting edge technologies and recent trends on ML methods applied to real-world manipulation tasks. After reviewing the related background on ML, the rest of the paper is devoted to ML applications in different domains such as industry, healthcare, agriculture, space, military, and search and rescue. The paper is closed with important research directions for future works.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.