亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Bidirectional attention $\unicode{x2013}$ composed of self-attention with positional encodings and the masked language model (MLM) objective $\unicode{x2013}$ has emerged as a key component of modern large language models (LLMs). Despite its empirical success, few studies have examined its statistical underpinnings: What statistical model is bidirectional attention implicitly fitting? What sets it apart from its non-attention predecessors? We explore these questions in this paper. The key observation is that fitting a single-layer single-head bidirectional attention, upon reparameterization, is equivalent to fitting a continuous bag of words (CBOW) model with mixture-of-experts (MoE) weights. Further, bidirectional attention with multiple heads and multiple layers is equivalent to stacked MoEs and a mixture of MoEs, respectively. This statistical viewpoint reveals the distinct use of MoE in bidirectional attention, which aligns with its practical effectiveness in handling heterogeneous data. It also suggests an immediate extension to categorical tabular data, if we view each word location in a sentence as a tabular feature. Across empirical studies, we find that this extension outperforms existing tabular extensions of transformers in out-of-distribution (OOD) generalization. Finally, this statistical perspective of bidirectional attention enables us to theoretically characterize when linear word analogies are present in its word embeddings. These analyses show that bidirectional attention can require much stronger assumptions to exhibit linear word analogies than its non-attention predecessors.

相關內容

Large language models (LLMs) have garnered significant attention in both the AI community and beyond. Among these, the Generative Pre-trained Transformer (GPT) has emerged as the dominant architecture, spawning numerous variants. However, these variants have undergone pre-training under diverse conditions, including variations in input data, data preprocessing, and training methodologies, resulting in a lack of controlled comparative studies. Here we meticulously examine two prominent open-sourced GPT architectures, GPT-NeoX and LLaMA, leveraging the computational power of Frontier, the world's first Exascale supercomputer. Employing the same materials science text corpus and a comprehensive end-to-end pipeline, we conduct a comparative analysis of their training and downstream performance. Our efforts culminate in achieving state-of-the-art performance on a challenging materials science benchmark. Furthermore, we investigate the computation and energy efficiency, and propose a computationally efficient method for architecture design. To our knowledge, these pre-trained models represent the largest available for materials science. Our findings provide practical guidance for building LLMs on HPC platforms.

Recursive types extend the simply-typed lambda calculus (STLC) with the additional expressive power to enable diverging computation and to encode recursive data-types (e.g., lists). Two formulations of recursive types exist: iso-recursive and equi-recursive. The relative advantages of iso- and equi-recursion are well-studied when it comes to their impact on type-inference. However, the relative semantic expressiveness of the two formulations remains unclear so far. This paper studies the semantic expressiveness of STLC with iso- and equi-recursive types, proving that these formulations are equally expressive. In fact, we prove that they are both as expressive as STLC with only term-level recursion. We phrase these equi-expressiveness results in terms of full abstraction of three canonical compilers between these three languages (STLC with iso-, with equi-recursive types and with term-level recursion). Our choice of languages allows us to study expressiveness when interacting over both a simply-typed and a recursively-typed interface. The three proofs all rely on a typed version of a proof technique called approximate backtranslation. Together, our results show that there is no difference in semantic expressiveness between STLCs with iso- and equi-recursive types. In this paper, we focus on a simply-typed setting but we believe our results scale to more powerful type systems like System F.

We conduct a systematic study of the approximation properties of Transformer for sequence modeling with long, sparse and complicated memory. We investigate the mechanisms through which different components of Transformer, such as the dot-product self-attention, positional encoding and feed-forward layer, affect its expressive power, and we study their combined effects through establishing explicit approximation rates. Our study reveals the roles of critical parameters in the Transformer, such as the number of layers and the number of attention heads, and these insights also provide natural suggestions for alternative architectures.

Let $S_d(n)$ denote the minimum number of wires of a depth-$d$ (unbounded fan-in) circuit encoding an error-correcting code $C:\{0, 1\}^n \to \{0, 1\}^{32n}$ with distance at least $4n$. G\'{a}l, Hansen, Kouck\'{y}, Pudl\'{a}k, and Viola [IEEE Trans. Inform. Theory 59(10), 2013] proved that $S_d(n) = \Theta_d(\lambda_d(n)\cdot n)$ for any fixed $d \ge 3$. By improving their construction and analysis, we prove $S_d(n)= O(\lambda_d(n)\cdot n)$. Letting $d = \alpha(n)$, a version of the inverse Ackermann function, we obtain circuits of linear size. This depth $\alpha(n)$ is the minimum possible to within an additive constant 2; we credit the nearly-matching depth lower bound to G\'{a}l et al., since it directly follows their method (although not explicitly claimed or fully verified in that work), and is obtained by making some constants explicit in a graph-theoretic lemma of Pudl\'{a}k [Combinatorica, 14(2), 1994], extending it to super-constant depths. We also study a subclass of MDS codes $C: \mathbb{F}^n \to \mathbb{F}^m$ characterized by the Hamming-distance relation $\mathrm{dist}(C(x), C(y)) \ge m - \mathrm{dist}(x, y) + 1$ for any distinct $x, y \in \mathbb{F}^n$. (For linear codes this is equivalent to the generator matrix being totally invertible.) We call these superconcentrator-induced codes, and we show their tight connection with superconcentrators. Specifically, we observe that any linear or nonlinear circuit encoding a superconcentrator-induced code must be a superconcentrator graph, and any superconcentrator graph can be converted to a linear circuit, over a sufficiently large field (exponential in the size of the graph), encoding a superconcentrator-induced code.

This paper leverages the use of \emph{Gram iteration} an efficient, deterministic, and differentiable method for computing spectral norm with an upper bound guarantee. Designed for circular convolutional layers, we generalize the use of the Gram iteration to zero padding convolutional layers and prove its quadratic convergence. We also provide theorems for bridging the gap between circular and zero padding convolution's spectral norm. We design a \emph{spectral rescaling} that can be used as a competitive $1$-Lipschitz layer that enhances network robustness. Demonstrated through experiments, our method outperforms state-of-the-art techniques in precision, computational cost, and scalability. The code of experiments is available at //github.com/blaisedelattre/lip4conv.

Despite their exceptional capabilities, large language models (LLMs) are prone to generating unintended text due to false or outdated knowledge. Given the resource-intensive nature of retraining LLMs, there has been a notable increase in the development of knowledge editing. However, current approaches and evaluations rarely explore the perturbation of editing on neighboring knowledge. This paper studies whether updating new knowledge to LLMs perturbs the neighboring knowledge encapsulated within them. Specifically, we seek to figure out whether appending a new answer into an answer list to a factual question leads to catastrophic forgetting of original correct answers in this list, as well as unintentional inclusion of incorrect answers. A metric of additivity is introduced and a benchmark dubbed as Perturbation Evaluation of Appending Knowledge (PEAK) is constructed to evaluate the degree of perturbation to neighboring knowledge when appending new knowledge. Besides, a plug-and-play framework termed Appending via Preservation and Prevention (APP) is proposed to mitigate the neighboring perturbation by maintaining the integrity of the answer list. Experiments demonstrate the effectiveness of APP coupling with four editing methods on three LLMs.

This study presents a Bayesian maximum \textit{a~posteriori} (MAP) framework for dynamical system identification from time-series data. This is shown to be equivalent to a generalized zeroth-order Tikhonov regularization, providing a rational justification for the choice of the residual and regularization terms, respectively, from the negative logarithms of the likelihood and prior distributions. In addition to the estimation of model coefficients, the Bayesian interpretation gives access to the full apparatus for Bayesian inference, including the ranking of models, the quantification of model uncertainties and the estimation of unknown (nuisance) hyperparameters. Two Bayesian algorithms, joint maximum \textit{a~posteriori} (JMAP) and variational Bayesian approximation (VBA), are compared to the popular SINDy algorithm for thresholded least-squares regression, by application to several dynamical systems with added noise. For multivariate Gaussian likelihood and prior distributions, the Bayesian formulation gives Gaussian posterior and evidence distributions, in which the numerator terms can be expressed in terms of the Mahalanobis distance or ``Gaussian norm'' $||\vy-\hat{\vy}||^2_{M^{-1}} = (\vy-\hat{\vy})^\top {M^{-1}} (\vy-\hat{\vy})$, where $\vy$ is a vector variable, $\hat{\vy}$ is its estimator and $M$ is the covariance matrix. The posterior Gaussian norm is shown to provide a robust metric for quantitative model selection.

This paper explores the feasibility and performance of on-device large language model (LLM) inference on various Apple iPhone models. Amidst the rapid evolution of generative AI, on-device LLMs offer solutions to privacy, security, and connectivity challenges inherent in cloud-based models. Leveraging existing literature on running multi-billion parameter LLMs on resource-limited devices, our study examines the thermal effects and interaction speeds of a high-performing LLM across different smartphone generations. We present real-world performance results, providing insights into on-device inference capabilities.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.

北京阿比特科技有限公司