QAC$^0$ is the class of constant-depth quantum circuits with polynomially many ancillary qubits, where Toffoli gates on arbitrarily many qubits are allowed. In this work, we show that the parity function cannot be computed in QAC$^0$, resolving a long-standing open problem in quantum circuit complexity more than twenty years old. As a result, this proves ${\rm QAC}^0 \subsetneqq {\rm QAC}_{\rm wf}^0$. We also show that any QAC circuit of depth $d$ that approximately computes parity on $n$ bits requires $2^{\widetilde{\Omega}(n^{1/d})}$ ancillary qubits, which is close to tight. This implies a similar lower bound on approximately preparing cat states using QAC circuits. Finally, we prove a quantum analog of the Linial-Mansour-Nisan theorem for QAC$^0$. This implies that, for any QAC$^0$ circuit $U$ with $a={\rm poly}(n)$ ancillary qubits, and for any $x\in\{0,1\}^n$, the correlation between $Q(x)$ and the parity function is bounded by ${1}/{2} + 2^{-\widetilde{\Omega}(n^{1/d})}$, where $Q(x)$ denotes the output of measuring the output qubit of $U|x,0^a\rangle$. All the above consequences rely on the following technical result. If $U$ is a QAC$^0$ circuit with $a={\rm poly}(n)$ ancillary qubits, then there is a distribution $\mathcal{D}$ of bounded polynomials of degree polylog$(n)$ such that with high probability, a random polynomial from $\mathcal{D}$ approximates the function $\langle x,0^a| U^\dag Z_{n+1} U |x,0^a\rangle$ for a large fraction of $x\in \{0,1\}^n$. This result is analogous to the Razborov-Smolensky result on the approximation of AC$^0$ circuits by random low-degree polynomials.
We address the decision problem for a fragment of real analysis involving differentiable functions with continuous first derivatives. The proposed theory, besides the operators of Tarski's theory of reals, includes predicates for comparisons, monotonicity, convexity, and derivative of functions over bounded closed intervals or unbounded intervals. Our decision algorithm is obtained by showing that satisfiable formulae of our theory admit canonical models in which functional variables are interpreted as piecewise exponential functions. These can be implicitly described within the decidable Tarski's theory of reals. Our satisfiability test generalizes previous decidability results not involving derivative operators.
In this paper, we develop an iterative method, based on the Bartels-Stewart algorithm to solve $N$-dimensional matrix equations, that relies on the Schur decomposition of the matrices involved. We remark that, unlike other possible implementations of that algorithm, ours avoids recursivity, and makes an efficient use of the available computational resources, which enables considering arbitrarily large problems, up to the size of the available memory. In this respect, we have successfully solved matrix equations in up to $N = 29$ dimensions. We explain carefully all the steps, and calculate accurately the computational cost required. Furthermore, in order to ease the understanding, we offer both pseudocodes and full Matlab codes, and special emphasis is put on making the implementation of the method completely independent from the number of dimensions. As an important application, the method allows to compute the solution of linear $N$-dimensional systems of ODEs of constant coefficients at any time $t$, and, hence, of evolutionary PDEs, after discretizing the spatial derivatives by means of matrices. In this regard, we are able to compute with great accuracy the solution of an advection-diffusion equation on $\mathbb R^N$.
The sum of quantum computing errors is the key element both for the estimation and control of errors in quantum computing and for its statistical study. In this article we analyze the sum of two independent quantum computing errors, $X_1$ and $X_2$, and we obtain the formula of the variance of the sum of these errors: $$ V(X_1+X_2)=V(X_1)+V(X_2)-\frac{V(X_1)V(X_2)}{2}. $$ We conjecture that this result holds true for general quantum computing errors and we prove the formula for independent isotropic quantum computing errors.
In a Jacobi--Davidson (JD) type method for singular value decomposition (SVD) problems, called JDSVD, a large symmetric and generally indefinite correction equation is solved iteratively at each outer iteration, which constitutes the inner iterations and dominates the overall efficiency of JDSVD. In this paper, a convergence analysis is made on the minimal residual (MINRES) method for the correction equation. Motivated by the results obtained, at each outer iteration a new correction equation is derived that extracts useful information from current subspaces to construct effective preconditioners for the correction equation and is proven to retain the same convergence of outer iterations of JDSVD.The resulting method is called inner preconditioned JDSVD (IPJDSVD) method; it is also a new JDSVD method, and any viable preconditioner for the correction equations in JDSVD is straightforwardly applicable to those in IPJDSVD. Convergence results show that MINRES for the new correction equation can converge much faster when there is a cluster of singular values closest to a given target. A new thick-restart IPJDSVD algorithm with deflation and purgation is proposed that simultaneously accelerates the outer and inner convergence of the standard thick-restart JDSVD and computes several singular triplets. Numerical experiments justify the theory and illustrate the considerable superiority of IPJDSVD to JDSVD, and demonstrate that a similar two-stage IPJDSVD algorithm substantially outperforms the most advanced PRIMME\_SVDS software nowadays for computing the smallest singular triplets.
In this paper, we employ group rings and automorphism groups of binary linear codes to construct new record-breaking binary linear codes. We consider the semidirect product of abelian groups and cyclic groups and use these groups to construct linear codes. Finally, we obtain some linear codes which have better parameters than the code in \cite{bib5}. All the calculation results and corresponding data are listed in the paper or posted online.
We characterise the behaviour of the maximum Diaconis-Ylvisaker prior penalized likelihood estimator in high-dimensional logistic regression, where the number of covariates is a fraction $\kappa \in (0,1)$ of the number of observations $n$, as $n \to \infty$. We derive the estimator's aggregate asymptotic behaviour under this proportional asymptotic regime, when covariates are independent normal random variables with mean zero and the linear predictor has asymptotic variance $\gamma^2$. From this foundation, we devise adjusted $Z$-statistics, penalized likelihood ratio statistics, and aggregate asymptotic results with arbitrary covariate covariance. While the maximum likelihood estimate asymptotically exists only for a narrow range of $(\kappa, \gamma)$ values, the maximum Diaconis-Ylvisaker prior penalized likelihood estimate not only exists always but is also directly computable using maximum likelihood routines. Thus, our asymptotic results also hold for $(\kappa, \gamma)$ values where results for maximum likelihood are not attainable, with no overhead in implementation or computation. We study the estimator's shrinkage properties, compare it to alternative estimation methods that can operate with proportional asymptotics, and present procedures for the estimation of unknown constants that describe the asymptotic behaviour of our estimator. We also provide a conjecture about the behaviour of our estimator when an intercept parameter is present in the model. We present results from extensive numerical studies to demonstrate the theoretical advances and strong evidence to support the conjecture, and illustrate the methodology we put forward through the analysis of a real-world data set on digit recognition.
The notion of a non-deterministic logical matrix (where connectives are interpreted as multi-functions) extends the traditional semantics for propositional logics based on logical matrices (where connectives are interpreted as functions). This extension allows for finitely characterizing a much wider class of logics, and has proven decisive in a myriad of recent compositionality results. In this paper we show that the added expressivity brought by non-determinism also has its drawbacks, and in particular that the problem of determining whether two given finite non-deterministic matrices are equivalent, in the sense that they induce the same logic, becomes undecidable. We also discuss some workable sufficient conditions and particular cases, namely regarding rexpansion homomorphisms and bridges to calculi.
We prove, for stably computably enumerable formal systems, direct analogues of the first and second incompleteness theorems of G\"odel. A typical stably computably enumerable set is the set of Diophantine equations with no integer solutions, and in particular such sets are generally not computably enumerable. And so this gives the first extension of the second incompleteness theorem to non classically computable formal systems. Let's motivate this with a somewhat physical application. Let $\mathcal{H} $ be the suitable infinite time limit (stabilization in the sense of the paper) of the mathematical output of humanity, specializing to first order sentences in the language of arithmetic (for simplicity), and understood as a formal system. Suppose that all the relevant physical processes in the formation of $\mathcal{H} $ are Turing computable. Then as defined $\mathcal{H} $ may \emph{not} be computably enumerable, but it is stably computably enumerable. Thus, the classical G\"odel disjunction applied to $\mathcal{H} $ is meaningless, but applying our incompleteness theorems to $\mathcal{H} $ we then get a sharper version of G\"odel's disjunction: assume $\mathcal{H} \vdash PA$ then either $\mathcal{H} $ is not stably computably enumerable or $\mathcal{H} $ is not 1-consistent (in particular is not sound) or $\mathcal{H} $ cannot prove a certain true statement of arithmetic (and cannot disprove it if in addition $\mathcal{H} $ is 2-consistent).
We consider the quantum query complexity of local search as a function of graph geometry. Given a graph $G = (V,E)$ with $n$ vertices and black box access to a function $f : V \to \mathbb{R}$, the goal is find a vertex $v$ that is a local minimum, i.e. with $f(v) \leq f(u)$ for all $(u,v) \in E$, using as few oracle queries as possible. We show that the quantum query complexity of local search on $G$ is $\Omega\bigl( \frac{n^{\frac{3}{4}}}{\sqrt{g}} \bigr)$, where $g$ is the vertex congestion of the graph. For a $\beta$-expander with maximum degree $\Delta$, this implies a lower bound of $ \Omega\bigl(\frac{\sqrt{\beta} \; n^{\frac{1}{4}}}{\sqrt{\Delta} \; \log{n}} \bigr)$. We obtain these bounds by applying the strong weighted adversary method to a construction by Br\^anzei, Choo, and Recker (2024). As a corollary, on constant degree expanders, we derive a lower bound of $\Omega\bigl(\frac{n^{\frac{1}{4}}}{ \sqrt{\log{n}}} \bigr)$. This improves upon the best prior quantum lower bound of $\Omega\bigl( \frac{n^{\frac{1}{8}}}{\log{n}}\bigr) $ by Santha and Szegedy (2004). In contrast to the classical setting, a gap remains in the quantum case between our lower bound and the best-known upper bound of $O\bigl( n^{\frac{1}{3}} \bigr)$ for such graphs.
For many problems, quantum algorithms promise speedups over their classical counterparts. However, these results predominantly rely on asymptotic worst-case analysis, which overlooks significant overheads due to error correction and the fact that real-world instances often contain exploitable structure. In this work, we employ the hybrid benchmarking method to evaluate the potential of quantum Backtracking and Grover's algorithm against the 2023 SAT competition main track winner in solving random $k$-SAT instances with tunable structure, designed to represent industry-like scenarios, using both $T$-depth and $T$-count as cost metrics to estimate quantum run times. Our findings reproduce the results of Campbell, Khurana, and Montanaro (Quantum '19) in the unstructured case using hybrid benchmarking. However, we offer a more sobering perspective in practically relevant regimes: almost all quantum speedups vanish, even asymptotically, when minimal structure is introduced or when $T$-count is considered instead of $T$-depth. Moreover, when the requirement is for the algorithm to find a solution within a single day, we find that only Grover's algorithm has the potential to outperform classical algorithms, but only in a very limited regime and only when using $T$-depth. We also discuss how more sophisticated heuristics could restore the asymptotic scaling advantage for quantum backtracking, but our findings suggest that the potential for practical quantum speedups in more structured $k$-SAT solving will remain limited.