亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We tackle the problem of robust novelty detection, where we aim to detect novelties in terms of semantic content while being invariant to changes in other, irrelevant factors. Specifically, we operate in a setup with multiple environments, where we determine the set of features that are associated more with the environments, rather than to the content relevant for the task. Thus, we propose a method that starts with a pretrained embedding and a multi-env setup and manages to rank the features based on their environment-focus. First, we compute a per-feature score based on the feature distribution variance between envs. Next, we show that by dropping the highly scored ones, we manage to remove spurious correlations and improve the overall performance by up to 6%, both in covariance and sub-population shift cases, both for a real and a synthetic benchmark, that we introduce for this task.

相關內容

We claim that existing techniques and tools for generating and verifying constant-time code are incomplete, since they rely on assumptions that compiler optimization passes do not break constant-timeness or that certain operations execute in constant time on the hardware. We present the first end-to-end constant-time-aware compilation process that preserves constant-time semantics at every step from a high-level language down to microarchitectural guarantees, provided by the forthcoming ARM PSTATE.DIT feature. First, we present a new compiler-verifier suite based on the JIT-style runtime Wasmtime, modified to compile ct-wasm, a preexisting type-safe constant-time extension of WebAssembly, into ARM machine code while maintaining the constant-time property throughout all optimization passes. The resulting machine code is then fed into an automated verifier that requires no human intervention and uses static dataflow analysis in Ghidra to check the constant-timeness of the output. Our verifier leverages characteristics unique to ct-wasm-generated code in order to speed up verification while preserving both soundness and wide applicability. We also consider the resistance of our compilation and verification against speculative timing leakages such as Spectre. Finally, in order to expose ct-Wasmtime at a high level, we present a port of FaCT, a preexisting constant-time-aware DSL, to target ct-wasm.

With the development of data collection techniques, analysis with a survival response and high-dimensional covariates has become routine. Here we consider an interaction model, which includes a set of low-dimensional covariates, a set of high-dimensional covariates, and their interactions. This model has been motivated by gene-environment (G-E) interaction analysis, where the E variables have a low dimension, and the G variables have a high dimension. For such a model, there has been extensive research on estimation and variable selection. Comparatively, inference studies with a valid false discovery rate (FDR) control have been very limited. The existing high-dimensional inference tools cannot be directly applied to interaction models, as interactions and main effects are not ``equal". In this article, for high-dimensional survival analysis with interactions, we model survival using the Accelerated Failure Time (AFT) model and adopt a ``weighted least squares + debiased Lasso'' approach for estimation and selection. A hierarchical FDR control approach is developed for inference and respect of the ``main effects, interactions'' hierarchy. { The asymptotic distribution properties of the debiased Lasso estimators} are rigorously established. Simulation demonstrates the satisfactory performance of the proposed approach, and the analysis of a breast cancer dataset further establishes its practical utility.

We present a novel technique for work-efficient parallel derandomization, for algorithms that rely on the concentration of measure bounds such as Chernoff, Hoeffding, and Bernstein inequalities. Our method increases the algorithm's computational work and depth by only polylogarithmic factors. Before our work, the only known method to obtain parallel derandomization with such strong concentrations was by the results of [Motwani, Naor, and Naor FOCS'89; Berger and Rompel FOCS'89], which perform a binary search in a $k$-wise independent space for $k=poly(\log n)$. However, that method blows up the computational work by a high $poly(n)$ factor and does not yield work-efficient parallel algorithms. Their method was an extension of the approach of [Luby FOCS'88], which gave a work-efficient derandomization but was limited to algorithms analyzed with only pairwise independence. Pushing the method from pairwise to the higher $k$-wise analysis resulted in the $poly(n)$ factor computational work blow-up. Our work can be viewed as an alternative extension from the pairwise case, which yields the desired strong concentrations while retaining work efficiency up to logarithmic factors. Our approach works by casting the problem of determining the random variables as an iterative process with $poly(\log n)$ iterations, where different iterations have independent randomness. This is done so that for the desired concentrations, we need only pairwise independence inside each iteration. In particular, we model each binary random variable as a result of a gradual random walk, and our method shows that the desired Chernoff-like concentrations about the endpoints of these walks can be boiled down to some pairwise analysis on the steps of these random walks in each iteration (while having independence across iterations).

Data augmentation is a powerful technique to enhance the performance of a deep learning task but has received less attention in 3D deep learning. It is well known that when 3D shapes are sparsely represented with low point density, the performance of the downstream tasks drops significantly. This work explores test-time augmentation (TTA) for 3D point clouds. We are inspired by the recent revolution of learning implicit representation and point cloud upsampling, which can produce high-quality 3D surface reconstruction and proximity-to-surface, respectively. Our idea is to leverage the implicit field reconstruction or point cloud upsampling techniques as a systematic way to augment point cloud data. Mainly, we test both strategies by sampling points from the reconstructed results and using the sampled point cloud as test-time augmented data. We show that both strategies are effective in improving accuracy. We observed that point cloud upsampling for test-time augmentation can lead to more significant performance improvement on downstream tasks such as object classification and segmentation on the ModelNet40, ShapeNet, ScanObjectNN, and SemanticKITTI datasets, especially for sparse point clouds.

The new era of technology has brought us to the point where it is convenient for people to share their opinions over an abundance of platforms. These platforms have a provision for the users to express themselves in multiple forms of representations, including text, images, videos, and audio. This, however, makes it difficult for users to obtain all the key information about a topic, making the task of automatic multi-modal summarization (MMS) essential. In this paper, we present a comprehensive survey of the existing research in the area of MMS.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

Humans can quickly learn new visual concepts, perhaps because they can easily visualize or imagine what novel objects look like from different views. Incorporating this ability to hallucinate novel instances of new concepts might help machine vision systems perform better low-shot learning, i.e., learning concepts from few examples. We present a novel approach to low-shot learning that uses this idea. Our approach builds on recent progress in meta-learning ("learning to learn") by combining a meta-learner with a "hallucinator" that produces additional training examples, and optimizing both models jointly. Our hallucinator can be incorporated into a variety of meta-learners and provides significant gains: up to a 6 point boost in classification accuracy when only a single training example is available, yielding state-of-the-art performance on the challenging ImageNet low-shot classification benchmark.

While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.

北京阿比特科技有限公司