This paper presents a Gaussian Process (GP) framework, a non-parametric technique widely acknowledged for regression and classification tasks, to address inverse problems in mean field games (MFGs). By leveraging GPs, we aim to recover agents' strategic actions and the environment's configurations from partial and noisy observations of the population of agents and the setup of the environment. Our method is a probabilistic tool to infer the behaviors of agents in MFGs from data in scenarios where the comprehensive dataset is either inaccessible or contaminated by noises.
Recently, the well-known dependency pair (DP) framework was adapted to a dependency tuple framework in order to prove almost-sure innermost termination (iAST) of probabilistic term rewrite systems. While this approach was incomplete, in this paper, we improve it into a complete criterion for iAST by presenting a new, more elegant definition of DPs for probabilistic term rewriting. Based on this, we extend the probabilistic DP framework by new transformations. Our implementation in the tool AProVE shows that they increase its power considerably.
This paper proposes a multitask learning framework for probabilistic model updating by jointly using strain and acceleration measurements. This framework can enhance the structural damage assessment and response prediction of existing steel frame structures with quantified uncertainty. Multitask learning may be used to address multiple similar inference tasks simultaneously to achieve a more robust prediction performance by transferring useful knowledge from one task to another, even in situations of data scarcity. In the proposed model-updating procedure, a spatial frame is decomposed into multiple planar frames that are viewed as multiple tasks and jointly analyzed based on the hierarchical Bayesian model, leading to robust estimation results. The procedure uses a displacement-stress relationship in the modal space because it directly reflects the elemental stiffness and requires no prior knowledge concerning the mass, unlike most existing model-updating techniques. Validation of the proposed framework by using a full-scale vibration test on a one-story, one-bay by one-bay moment resisting steel frame, wherein structural damage to the column bases is simulated by loosening the anchor bolts, is presented. The experimental results suggest that the displacement-stress relationship has sufficient sensitivity toward localized damage, and the Bayesian multitask learning approach may result in the efficient use of measurements such that the uncertainty involved in model parameter estimation is reduced. The proposed framework facilitates more robust and informative model updating.
This paper presents a comprehensive study on using deep reinforcement learning (RL) to create dynamic locomotion controllers for bipedal robots. Going beyond focusing on a single locomotion skill, we develop a general control solution that can be used for a range of dynamic bipedal skills, from periodic walking and running to aperiodic jumping and standing. Our RL-based controller incorporates a novel dual-history architecture, utilizing both a long-term and short-term input/output (I/O) history of the robot. This control architecture, when trained through the proposed end-to-end RL approach, consistently outperforms other methods across a diverse range of skills in both simulation and the real world.The study also delves into the adaptivity and robustness introduced by the proposed RL system in developing locomotion controllers. We demonstrate that the proposed architecture can adapt to both time-invariant dynamics shifts and time-variant changes, such as contact events, by effectively using the robot's I/O history. Additionally, we identify task randomization as another key source of robustness, fostering better task generalization and compliance to disturbances. The resulting control policies can be successfully deployed on Cassie, a torque-controlled human-sized bipedal robot. This work pushes the limits of agility for bipedal robots through extensive real-world experiments. We demonstrate a diverse range of locomotion skills, including: robust standing, versatile walking, fast running with a demonstration of a 400-meter dash, and a diverse set of jumping skills, such as standing long jumps and high jumps.
This paper presents a framework that integrates Large Language Models (LLMs) into translation validation, targeting LLVM compiler transformations where formal verification tools are insufficient. Our framework first utilizes existing formal verification frameworks for translation validation. In this work, we use Alive2, a well-known tool in LLVM compiler verification, as an example. When formal verification frameworks are unable to confirm a transformation's soundness, our framework employs fine-tuned LLMs for prediction. It applies fuzzing to transformations predicted as potentially unsound by the LLMs due to return value or memory inconsistencies, aiming to find counterexamples. In cases where transformations are unsound for other reasons or sound, or if no counterexamples emerge, the framework directly reports these outcomes without further fuzzing. This methodology has shown effectiveness in complex areas like deep-learning accelerator design, where traditional tools struggle.
The transition to 4th generation district heating creates a growing need for scalable, automated design tools that accurately capture the spatial and temporal details of heating network operation. This paper presents an automated design approach for the optimal design of district heating networks that combines scalable density-based topology optimization with a multi-period approach. In this way, temporal variations in demand, supply, and heat losses can be taken into account while optimizing the network design based on a nonlinear physics model. The transition of the automated design approach from worst-case to multi-period shows a design progression from separate branched networks to a single integrated meshed network topology connecting all producers. These integrated topologies emerge without imposing such structures a priori. They increase network connectivity, and allow for more flexible shifting of heat loads between different producers and heat consumers, resulting in more cost-effective use of heat. In a case study, this integrated design resulted in an increase in waste heat share of 42.8 % and a subsequent reduction in project cost of 17.9 %. We show how producer unavailability can be accounted for in the automated design at the cost of a 3.1 % increase in the cost of backup capacity. The resulting optimized network designs of this approach connect multiple low temperature heat sources in a single integrated network achieving high waste heat utilization and redundancy, highlighting the applicability of the approach to next-generation district heating networks.
This study introduces the Lower Ricci Curvature (LRC), a novel, scalable, and scale-free discrete curvature designed to enhance community detection in networks. Addressing the computational challenges posed by existing curvature-based methods, LRC offers a streamlined approach with linear computational complexity, making it well-suited for large-scale network analysis. We further develop an LRC-based preprocessing method that effectively augments popular community detection algorithms. Through comprehensive simulations and applications on real-world datasets, including the NCAA football league network, the DBLP collaboration network, the Amazon product co-purchasing network, and the YouTube social network, we demonstrate the efficacy of our method in significantly improving the performance of various community detection algorithms.
This paper presents preliminary work on a general system for integrating dependent types into substructural type systems such as linear logic and linear type theory. Prior work on this front has generally managed to deliver type systems possessing either syntax or semantics inclusive of certain practical applications, but has struggled to combine these all in one and the same system. Toward resolving this difficulty, I propose a novel categorical interpretation of substructural dependent types, analogous to the use of monoidal categories as models of linear and ordered logic, that encompasses a wide class of mathematical and computational examples. On this basis, I develop a general framework for substructural dependent type theories, and proceed to prove some essential metatheoretic properties thereof. As an application of this framework, I show how it can be used to construct a type theory that satisfactorily addresses the problem of effectively representing cut admissibility for linear sequent calculus in a logical framework.
We explore a novel methodology for constructing confidence regions for parameters of linear models, using predictions from any arbitrary predictor. Our framework requires minimal assumptions on the noise and can be extended to functions deviating from strict linearity up to some adjustable threshold, thereby accommodating a comprehensive and pragmatically relevant set of functions. The derived confidence regions can be cast as constraints within a Mixed Integer Linear Programming framework, enabling optimisation of linear objectives. This representation enables robust optimization and the extraction of confidence intervals for specific parameter coordinates. Unlike previous methods, the confidence region can be empty, which can be used for hypothesis testing. Finally, we validate the empirical applicability of our method on synthetic data.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.
We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.