This work addresses the inherited limitations in the current state-of-the-art 3D multi-object tracking (MOT) methods that follow the tracking-by-detection paradigm, notably trajectory estimation drift for long-occluded objects in LiDAR point cloud streams acquired by autonomous cars. In addition, the absence of adequate track legitimacy verification results in ghost track accumulation. To tackle these issues, we introduce a two-fold innovation. Firstly, we propose refinement in Kalman filter that enhances trajectory drift noise mitigation, resulting in more robust state estimation for occluded objects. Secondly, we propose a novel online track validity mechanism to distinguish between legitimate and ghost tracks combined with a multi-stage observational gating process for incoming observations. This mechanism substantially reduces ghost tracks by up to 80\% and improves HOTA by 7\%. Accordingly, we propose an online 3D MOT framework, RobMOT, that demonstrates superior performance over the top-performing state-of-the-art methods, including deep learning approaches, across various detectors with up to 3.28\% margin in MOTA and 2.36\% in HOTA. RobMOT excels under challenging conditions, such as prolonged occlusions and the tracking of distant objects, with up to 59\% enhancement in processing latency.
Physical Human-Scene Interaction (HSI) plays a crucial role in numerous applications. However, existing HSI techniques are limited to specific object dynamics and privileged information, which prevents the development of more comprehensive applications. To address this limitation, we introduce HumanVLA for general object rearrangement directed by practical vision and language. A teacher-student framework is utilized to develop HumanVLA. A state-based teacher policy is trained first using goal-conditioned reinforcement learning and adversarial motion prior. Then, it is distilled into a vision-language-action model via behavior cloning. We propose several key insights to facilitate the large-scale learning process. To support general object rearrangement by physical humanoid, we introduce a novel Human-in-the-Room dataset encompassing various rearrangement tasks. Through extensive experiments and analysis, we demonstrate the effectiveness of the proposed approach.
We introduce NoteChat, a novel cooperative multi-agent framework leveraging Large Language Models (LLMs) to generate patient-physician dialogues. NoteChat embodies the principle that an ensemble of role-specific LLMs, through structured role-play and strategic prompting, can perform their assigned roles more effectively. The synergy among these role-playing LLMs results in a cohesive and efficient dialogue generation. Evaluation on MTS-dialogue, a benchmark dataset for patient-physician dialogues-note pairs, shows that models trained with the augmented synthetic patient-physician dialogues by NoteChat outperforms other state-of-the-art models for generating clinical notes. Our comprehensive automatic and human evaluation demonstrates that NoteChat substantially surpasses state-of-the-art models like ChatGPT and GPT-4 up to 22.78% by domain experts in generating superior synthetic patient-physician dialogues based on clinical notes. NoteChat has the potential to engage patients directly and help clinical documentation, a leading cause of physician burnout.
Contrastive Vision-Language Pre-training(CLIP) demonstrates impressive zero-shot capability. The key to improve the adaptation of CLIP to downstream task with few exemplars lies in how to effectively model and transfer the useful knowledge embedded in CLIP. Previous work mines the knowledge typically based on the limited visual samples and close-set semantics (i.e., within target category set of downstream task). However, the aligned CLIP image/text encoders contain abundant relationships between visual features and almost infinite open semantics, which may benefit the few-shot learning but remains unexplored. In this paper, we propose to mine open semantics as anchors to perform a relation transition from image-anchor relationship to image-target relationship to make predictions. Specifically, we adopt a transformer module which takes the visual feature as "Query", the text features of the anchors as "Key" and the similarity matrix between the text features of anchor and target classes as "Value". In this way, the output of such a transformer module represents the relationship between the image and target categories, i.e., the classification predictions. To avoid manually selecting the open semantics, we make the [CLASS] token of input text embedding learnable. We conduct extensive experiments on eleven representative classification datasets. The results show that our method performs favorably against previous state-of-the-arts considering few-shot classification settings.
Recent works have introduced GNN-to-MLP knowledge distillation (KD) frameworks to combine both GNN's superior performance and MLP's fast inference speed. However, existing KD frameworks are primarily designed for node classification within single graphs, leaving their applicability to graph classification largely unexplored. Two main challenges arise when extending KD for node classification to graph classification: (1) The inherent sparsity of learning signals due to soft labels being generated at the graph level; (2) The limited expressiveness of student MLPs, especially in datasets with limited input feature spaces. To overcome these challenges, we introduce MuGSI, a novel KD framework that employs Multi-granularity Structural Information for graph classification. Specifically, we propose multi-granularity distillation loss in MuGSI to tackle the first challenge. This loss function is composed of three distinct components: graph-level distillation, subgraph-level distillation, and node-level distillation. Each component targets a specific granularity of the graph structure, ensuring a comprehensive transfer of structural knowledge from the teacher model to the student model. To tackle the second challenge, MuGSI proposes to incorporate a node feature augmentation component, thereby enhancing the expressiveness of the student MLPs and making them more capable learners. We perform extensive experiments across a variety of datasets and different teacher/student model architectures. The experiment results demonstrate the effectiveness, efficiency, and robustness of MuGSI. Codes are publicly available at: \textbf{\url{//github.com/tianyao-aka/MuGSI}.}
Recently, very large language models (LLMs) have shown exceptional performance on several English NLP tasks with just in-context learning (ICL), but their utility in other languages is still underexplored. We investigate their effectiveness for NLP tasks in low-resource languages (LRLs), especially in the setting of zero-labelled cross-lingual transfer (0-CLT), where no labelled training data for the target language is available -- however training data from one or more related medium-resource languages (MRLs) is utilized, alongside the available unlabeled test data for a target language. We introduce Self-Supervised Prompting (SSP), a novel ICL approach tailored for the 0-CLT setting. SSP is based on the key observation that LLMs output more accurate labels if in-context exemplars are from the target language (even if their labels are slightly noisy). To operationalize this, since target language training data is not available in 0-CLT, SSP operates in two stages. In Stage I, using source MRL training data, target language's test data is noisily labeled. In Stage II, these noisy test data points are used as exemplars in ICL for further improved labelling. Additionally, our implementation of SSP uses a novel Integer Linear Programming (ILP)-based exemplar selection that balances similarity, prediction confidence (when available) and label coverage. Experiments on three tasks and eleven LRLs (from three regions) demonstrate that SSP strongly outperforms existing SOTA fine-tuned and prompting-based baselines in 0-CLT setup.
Fervent calls for more robust governance of the harms associated with artificial intelligence (AI) are leading to the adoption around the world of what regulatory scholars have called a management-based approach to regulation. Recent initiatives in the United States and Europe, as well as the adoption of major self-regulatory standards by the International Organization for Standardization, share in common a core management-based paradigm. These management-based initiatives seek to motivate an increase in human oversight of how AI tools are trained and developed. Refinements and systematization of human-guided training techniques will thus be needed to fit within this emerging era of management-based regulatory paradigm. If taken seriously, human-guided training can alleviate some of the technical and ethical pressures on AI, boosting AI performance with human intuition as well as better addressing the needs for fairness and effective explainability. In this paper, we discuss the connection between the emerging management-based regulatory frameworks governing AI and the need for human oversight during training. We broadly cover some of the technical components involved in human-guided training and then argue that the kinds of high-stakes use cases for AI that appear of most concern to regulators should lean more on human-guided training than on data-only training. We hope to foster a discussion between legal scholars and computer scientists involving how to govern a domain of technology that is vast, heterogenous, and dynamic in its applications and risks.
We present a multimodal learning-based method to simultaneously synthesize co-speech facial expressions and upper-body gestures for digital characters using RGB video data captured using commodity cameras. Our approach learns from sparse face landmarks and upper-body joints, estimated directly from video data, to generate plausible emotive character motions. Given a speech audio waveform and a token sequence of the speaker's face landmark motion and body-joint motion computed from a video, our method synthesizes the motion sequences for the speaker's face landmarks and body joints to match the content and the affect of the speech. We design a generator consisting of a set of encoders to transform all the inputs into a multimodal embedding space capturing their correlations, followed by a pair of decoders to synthesize the desired face and pose motions. To enhance the plausibility of synthesis, we use an adversarial discriminator that learns to differentiate between the face and pose motions computed from the original videos and our synthesized motions based on their affective expressions. To evaluate our approach, we extend the TED Gesture Dataset to include view-normalized, co-speech face landmarks in addition to body gestures. We demonstrate the performance of our method through thorough quantitative and qualitative experiments on multiple evaluation metrics and via a user study. We observe that our method results in low reconstruction error and produces synthesized samples with diverse facial expressions and body gestures for digital characters.
State-of-the-art models on contemporary 3D segmentation benchmarks like ScanNet consume and label dataset-provided 3D point clouds, obtained through post processing of sensed multiview RGB-D images. They are typically trained in-domain, forego large-scale 2D pre-training and outperform alternatives that featurize the posed RGB-D multiview images instead. The gap in performance between methods that consume posed images versus post-processed 3D point clouds has fueled the belief that 2D and 3D perception require distinct model architectures. In this paper, we challenge this view and propose ODIN (Omni-Dimensional INstance segmentation), a model that can segment and label both 2D RGB images and 3D point clouds, using a transformer architecture that alternates between 2D within-view and 3D cross-view information fusion. Our model differentiates 2D and 3D feature operations through the positional encodings of the tokens involved, which capture pixel coordinates for 2D patch tokens and 3D coordinates for 3D feature tokens. ODIN achieves state-of-the-art performance on ScanNet200, Matterport3D and AI2THOR 3D instance segmentation benchmarks, and competitive performance on ScanNet, S3DIS and COCO. It outperforms all previous works by a wide margin when the sensed 3D point cloud is used in place of the point cloud sampled from 3D mesh. When used as the 3D perception engine in an instructable embodied agent architecture, it sets a new state-of-the-art on the TEACh action-from-dialogue benchmark. Our code and checkpoints can be found at the project website (//odin-seg.github.io).
Graph Neural Networks (GNNs) have gained momentum in graph representation learning and boosted the state of the art in a variety of areas, such as data mining (\emph{e.g.,} social network analysis and recommender systems), computer vision (\emph{e.g.,} object detection and point cloud learning), and natural language processing (\emph{e.g.,} relation extraction and sequence learning), to name a few. With the emergence of Transformers in natural language processing and computer vision, graph Transformers embed a graph structure into the Transformer architecture to overcome the limitations of local neighborhood aggregation while avoiding strict structural inductive biases. In this paper, we present a comprehensive review of GNNs and graph Transformers in computer vision from a task-oriented perspective. Specifically, we divide their applications in computer vision into five categories according to the modality of input data, \emph{i.e.,} 2D natural images, videos, 3D data, vision + language, and medical images. In each category, we further divide the applications according to a set of vision tasks. Such a task-oriented taxonomy allows us to examine how each task is tackled by different GNN-based approaches and how well these approaches perform. Based on the necessary preliminaries, we provide the definitions and challenges of the tasks, in-depth coverage of the representative approaches, as well as discussions regarding insights, limitations, and future directions.
State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.