DAPHNE is a new open-source software infrastructure designed to address the increasing demands of integrated data analysis (IDA) pipelines, comprising data management (DM), high performance computing (HPC), and machine learning (ML) systems. Efficiently executing IDA pipelines is challenging due to their diverse computing characteristics and demands. Therefore, IDA pipelines executed with the DAPHNE infrastructure require an efficient and versatile scheduler to support these demands. This work introduces DaphneSched, the task-based scheduler at the core of DAPHNE. DaphneSched is versatile by incorporating eleven task partitioning and three task assignment techniques, bringing the state-of-the-art closer to the state-of-the-practice task scheduling. To showcase DaphneSched's effectiveness in scheduling IDA pipelines, we evaluate its performance on two applications: a product recommendation system and a linear regression model training. We conduct performance experiments on multicore platforms with 20 and 56 cores. The results show that the versatility of DaphneSched enabled combinations of scheduling strategies that outperform commonly used scheduling techniques by up to 13%. This work confirms the benefits of employing DaphneSched for the efficient execution of applications with IDA pipelines.
We present a machine learning (ML)-assisted framework bridging manifold learning, neural networks, Gaussian processes, and Equation-Free multiscale modeling, for (a) detecting tipping points in the emergent behavior of complex systems, and (b) characterizing probabilities of rare events (here, catastrophic shifts) near them. Our illustrative example is an event-driven, stochastic agent-based model (ABM) describing the mimetic behavior of traders in a simple financial market. Given high-dimensional spatiotemporal data -- generated by the stochastic ABM -- we construct reduced-order models for the emergent dynamics at different scales: (a) mesoscopic Integro-Partial Differential Equations (IPDEs); and (b) mean-field-type Stochastic Differential Equations (SDEs) embedded in a low-dimensional latent space, targeted to the neighborhood of the tipping point. We contrast the uses of the different models and the effort involved in learning them.
Monocular depth estimation (MDE) is a fundamental topic of geometric computer vision and a core technique for many downstream applications. Recently, several methods reframe the MDE as a classification-regression problem where a linear combination of probabilistic distribution and bin centers is used to predict depth. In this paper, we propose a novel concept of iterative elastic bins (IEBins) for the classification-regression-based MDE. The proposed IEBins aims to search for high-quality depth by progressively optimizing the search range, which involves multiple stages and each stage performs a finer-grained depth search in the target bin on top of its previous stage. To alleviate the possible error accumulation during the iterative process, we utilize a novel elastic target bin to replace the original target bin, the width of which is adjusted elastically based on the depth uncertainty. Furthermore, we develop a dedicated framework composed of a feature extractor and an iterative optimizer that has powerful temporal context modeling capabilities benefiting from the GRU-based architecture. Extensive experiments on the KITTI, NYU-Depth-v2 and SUN RGB-D datasets demonstrate that the proposed method surpasses prior state-of-the-art competitors. The source code is publicly available at //github.com/ShuweiShao/IEBins.
The translation of brain dynamics into natural language is pivotal for brain-computer interfaces (BCIs), a field that has seen substantial growth in recent years. With the swift advancement of large language models, such as ChatGPT, the need to bridge the gap between the brain and languages becomes increasingly pressing. Current methods, however, require eye-tracking fixations or event markers to segment brain dynamics into word-level features, which can restrict the practical application of these systems. These event markers may not be readily available or could be challenging to acquire during real-time inference, and the sequence of eye fixations may not align with the order of spoken words. To tackle these issues, we introduce a novel framework, DeWave, that integrates discrete encoding sequences into open-vocabulary EEG-to-text translation tasks. DeWave uses a quantized variational encoder to derive discrete codex encoding and align it with pre-trained language models. This discrete codex representation brings forth two advantages: 1) it alleviates the order mismatch between eye fixations and spoken words by introducing text-EEG contrastive alignment training, and 2) it minimizes the interference caused by individual differences in EEG waves through an invariant discrete codex. Our model surpasses the previous baseline (40.1 and 31.7) by 3.06% and 6.34%, respectively, achieving 41.35 BLEU-1 and 33.71 Rouge-F on the ZuCo Dataset. Furthermore, this work is the first to facilitate the translation of entire EEG signal periods without needing word-level order markers (e.g., eye fixations), scoring 20.5 BLEU-1 and 29.5 Rouge-1 on the ZuCo Dataset, respectively. Codes and the final paper will be public soon.
Deep neural network (DNN) models have become increasingly crucial components in intelligent software systems. However, training a DNN model is typically expensive in terms of both time and money. To address this issue, researchers have recently focused on reusing existing DNN models - borrowing the idea of code reuse in software engineering. However, reusing an entire model could cause extra overhead or inherits the weakness from the undesired functionalities. Hence, existing work proposes to decompose an already trained model into modules, i.e., modularizing-after-training, and enable module reuse. Since trained models are not built for modularization, modularizing-after-training incurs huge overhead and model accuracy loss. In this paper, we propose a novel approach that incorporates modularization into the model training process, i.e., modularizing-while-training (MwT). We train a model to be structurally modular through two loss functions that optimize intra-module cohesion and inter-module coupling. We have implemented the proposed approach for modularizing Convolutional Neural Network (CNN) models in this work. The evaluation results on representative models demonstrate that MwT outperforms the state-of-the-art approach. Specifically, the accuracy loss caused by MwT is only 1.13 percentage points, which is 1.76 percentage points less than that of the baseline. The kernel retention rate of the modules generated by MwT is only 14.58%, with a reduction of 74.31% over the state-of-the-art approach. Furthermore, the total time cost required for training and modularizing is only 108 minutes, half of the baseline.
This work aims to provide an overview on the open-source multilanguage tool called StyloMetrix. It offers stylometric text representations that cover various aspects of grammar, syntax and lexicon. StyloMetrix covers four languages: Polish as the primary language, English, Ukrainian and Russian. The normalized output of each feature can become a fruitful course for machine learning models and a valuable addition to the embeddings layer for any deep learning algorithm. We strive to provide a concise, but exhaustive overview on the application of the StyloMetrix vectors as well as explain the sets of the developed linguistic features. The experiments have shown promising results in supervised content classification with simple algorithms as Random Forest Classifier, Voting Classifier, Logistic Regression and others. The deep learning assessments have unveiled the usefulness of the StyloMetrix vectors at enhancing an embedding layer extracted from Transformer architectures. The StyloMetrix has proven itself to be a formidable source for the machine learning and deep learning algorithms to execute different classification tasks.
Compartmentalization is a form of defensive software design in which an application is broken down into isolated but communicating components. Retrofitting compartmentalization into existing applications is often thought to be expensive from the engineering effort and performance overhead points of view. Still, recent years have seen proposals of compartmentalization methods with promises of low engineering efforts and reduced performance impact. ARM Morello combines a modern ARM processor with an implementation of Capability Hardware Enhanced RISC Instructions (CHERI) aiming to provide efficient and secure compartmentalization. Past works exploring CHERI-based compartmentalization were restricted to emulated/FPGA prototypes. In this paper, we explore possible compartmentalization schemes with CHERI on the Morello chip. We propose two approaches representing different trade-offs in terms of engineering effort, security, scalability, and performance impact. We describe and implement these approaches on a prototype OS running bare metal on the Morello chip, compartmentalize two popular applications, and investigate the performance overheads. Furthermore, we show that compartmentalization can be achieved with an engineering cost that can be quite low if one is willing to trade off on scalability and security, and that performance overheads are similar to other intra-address space isolation mechanisms.
Multi-modal unsupervised domain adaptation (MM-UDA) for 3D semantic segmentation is a practical solution to embed semantic understanding in autonomous systems without expensive point-wise annotations. While previous MM-UDA methods can achieve overall improvement, they suffer from significant class-imbalanced performance, restricting their adoption in real applications. This imbalanced performance is mainly caused by: 1) self-training with imbalanced data and 2) the lack of pixel-wise 2D supervision signals. In this work, we propose Multi-modal Prior Aided (MoPA) domain adaptation to improve the performance of rare objects. Specifically, we develop Valid Ground-based Insertion (VGI) to rectify the imbalance supervision signals by inserting prior rare objects collected from the wild while avoiding introducing artificial artifacts that lead to trivial solutions. Meanwhile, our SAM consistency loss leverages the 2D prior semantic masks from SAM as pixel-wise supervision signals to encourage consistent predictions for each object in the semantic mask. The knowledge learned from modal-specific prior is then shared across modalities to achieve better rare object segmentation. Extensive experiments show that our method achieves state-of-the-art performance on the challenging MM-UDA benchmark. Code will be available at //github.com/AronCao49/MoPA.
It is generally desirable for high-performance computing (HPC) applications to be portable between HPC systems, for example to make use of more performant hardware, make effective use of allocations, and to co-locate compute jobs with large datasets. Unfortunately, moving scientific applications between HPC systems is challenging for various reasons, most notably that HPC systems have different HPC schedulers. We introduce PSI/J, a job management abstraction API intended to simplify the construction of software components and applications that are portable over various HPC scheduler implementations. We argue that such a system is both necessary and that no viable alternative currently exists. We analyze similar notable APIs and attempt to determine the factors that influenced their evolution and adoption by the HPC community. We base the design of PSI/J on that analysis. We describe how PSI/J has been integrated in three workflow systems and one application, and also show via experiments that PSI/J imposes minimal overhead.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.